Phagemid vectors for phage display: properties, characteristics and construction.

Phagemids are filamentous-phage-derived vectors containing the replication origin of a plasmid. Phagemids usually encode no or only one kind of coat proteins. Other structural and functional proteins necessary to accomplish the life cycle of phagemid are provided by the helper phage. In addition, other elements such as molecular tags and selective markers are introduced into the phagemids to facilitate the subsequent operations, such as gene manipulation and protein purification. This review summarizes the elements of the phagemids and their corresponding functions. Finally, the possible trends and future direction to improve the characteristics of the phagemids are highlighted.

[1]  R. Lerner,et al.  Making artificial antibodies: a format for phage display of combinatorial heterodimeric arrays. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[2]  C. Barbas,et al.  Linkage of recognition and replication functions by assembling combinatorial antibody Fab libraries along phage surfaces. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[3]  N. Zinder,et al.  Multiregulatory element of filamentous bacteriophages. , 1985, Microbiological reviews.

[4]  B. Müller-Hill,et al.  Filamentous coliphage M13 as a cloning vehicle: insertion of a HindII fragment of the lac regulatory region in M13 replicative form in vitro. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[5]  C. Barbas,et al.  Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[6]  H R Hoogenboom,et al.  Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. , 1991, Nucleic acids research.

[7]  R. Aitken Antibody Phage Display , 2001, Methods in Molecular Biology.

[8]  P. Pansri,et al.  A compact phage display human scFv library for selection of antibodies to a wide variety of antigens , 2009, BMC biotechnology.

[9]  Chuanbin Mao,et al.  Virus-based chemical and biological sensing. , 2009, Angewandte Chemie.

[10]  O. Mäkelä,et al.  INHERITANCE OF ANTIBODY SPECIFICITY , 1974, The Journal of experimental medicine.

[11]  Xiaodong Cen,et al.  Construction of a large phage display antibody library by in vitro package and in vivo recombination , 2006, Applied Microbiology and Biotechnology.

[12]  M. Little,et al.  The antigen-binding domain of a human IgG-anti-F(ab')2 autoantibody. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[13]  E. Wiersma,et al.  A new helper phage and phagemid vector system improves viral display of antibody Fab fragments and avoids propagation of insert-less virions. , 2003, Journal of immunological methods.

[14]  W. Stiekema,et al.  Phage display of a double-headed proteinase inhibitor: Analysis of the binding domains of potato proteinase inhibitor II , 1995, Molecular Breeding.

[15]  Yasuo Tsutsumi,et al.  A novel method for construction of gene fragment library to searching epitopes. , 2006, Biochemical and biophysical research communications.

[16]  M. Little,et al.  A surface expression vector for antibody screening. , 1991, Gene.

[17]  F. Jurnak,et al.  EF-Tu binding peptides identified, dissected, and affinity optimized by phage display. , 2003, Chemistry & biology.

[18]  K. Sakaguchi,et al.  Use of phage display technology for the determination of the targets for small-molecule therapeutics , 2010, Expert opinion on drug discovery.

[19]  I. Rasched,et al.  Ff coliphages: structural and functional relationships. , 1986, Microbiological reviews.

[20]  P. S. Andersen,et al.  Efficient method for constructing comprehensive murine Fab antibody libraries displayed on phage. , 1993, Nucleic acids research.

[21]  J. Pelkonen,et al.  Inheritance of antibody specificity V. Anti-2-phenyloxazolone in the mouse , 1978, The Journal of experimental medicine.

[22]  E. Appella,et al.  Structural mimicry and enhanced immunogenicity of peptide epitopes displayed on filamentous bacteriophage. The V3 loop of HIV-1 gp120. , 1994, Journal of molecular biology.

[23]  I. Rasched,et al.  The adsorption protein of bacteriophage fd and its neighbour minor coat protein build a structural entity. , 1994, European journal of biochemistry.

[24]  G. Weiss,et al.  High copy display of large proteins on phage for functional selections. , 2000, Journal of molecular biology.

[25]  J. Wells,et al.  Hormone phage: An enrichment method for variant proteins with altered binding properties , 1990, Proteins.

[26]  R. Lerner,et al.  A cell-penetrating peptide from a novel pVII-pIX phage-displayed random peptide library. , 2002, Bioorganic & medicinal chemistry.

[27]  A. Koide,et al.  The fibronectin type III domain as a scaffold for novel binding proteins. , 1998, Journal of molecular biology.

[28]  A. Schots,et al.  Display and selection of chicken IgA Fab fragments. , 2006, Veterinary immunology and immunopathology.

[29]  L. Wyns,et al.  Selection and identification of single domain antibody fragments from camel heavy‐chain antibodies , 1997, FEBS letters.

[30]  P. S. Andersen,et al.  Phage-display libraries of murine and human antibody Fab fragments , 1996, Methods in molecular biology.

[31]  G. P. Smith,et al.  Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. , 1985, Science.

[32]  J. Boeke,et al.  The filamentous phage (Ff) as vectors for recombinant DNA--a review. , 1982, Gene.

[33]  A. Hauser The type III secretion system of Pseudomonas aeruginosa: infection by injection , 2009, Nature Reviews Microbiology.

[34]  A. Plückthun,et al.  Inclusion of an upstream transcriptional terminator in phage display vectors abolishes background expression of toxic fusions with coat protein g3p. , 1996, Gene.

[35]  L. Gráf,et al.  When the surface tells what lies beneath: combinatorial phage-display mutagenesis reveals complex networks of surface-core interactions in the pacifastin protease inhibitor family. , 2007, Journal of molecular biology.

[36]  S. Bass,et al.  Selecting high-affinity binding proteins by monovalent phage display. , 1991, Biochemistry.

[37]  K. Jensen-Pergakes,et al.  Evolving phage vectors for cell targeted gene delivery. , 2002, Current pharmaceutical biotechnology.

[38]  Jun Yin,et al.  Enzyme‐Catalyzed Substrate Attachment to Phage Surfaces for the Selection of Catalytic Activities , 2011, Chembiochem : a European journal of chemical biology.

[39]  Ronald W. Barrett,et al.  Small Peptides as Potent Mimetics of the Protein Hormone Erythropoietin , 1996, Science.

[40]  M. Arbabi,et al.  Construction of human recombinant ScFv phage libraries from the advanced stages of breast carcinoma patients , 2005 .

[41]  E. H. Cohen,et al.  Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determining-region diversity , 2005, Nature Biotechnology.

[42]  D. Ray,et al.  Insertion of the Tn3 transposon into the genome of the single-stranded DNA phage M13. , 1978, Gene.

[43]  J. Vieira,et al.  Production of single-stranded plasmid DNA. , 1987, Methods in enzymology.

[44]  D. Bosch,et al.  A phagemid vector using the E. coli phage shock promoter facilitates phage display of toxic proteins. , 1999, Gene.

[45]  H. Fu,et al.  Phage display vectors for in vivo recombination of immunoglobulin heavy and light chain genes to make large combinatorial libraries. , 1996, Gene.

[46]  I. Nicholls,et al.  Filamentous bacteriophage stability in non-aqueous media. , 2001, Chemistry & biology.

[47]  N. Zinder,et al.  The functional origin of bacteriophage f1 DNA replication. Its signals and domains. , 1984, Journal of molecular biology.

[48]  Hassan M E Azzazy,et al.  Phage display technology: clinical applications and recent innovations. , 2002, Clinical biochemistry.

[49]  Hennie R. Hoogenboom,et al.  A Large Non-immunized Human Fab Fragment Phage Library That Permits Rapid Isolation and Kinetic Analysis of High Affinity Antibodies* , 1999, The Journal of Biological Chemistry.

[50]  G. Whitelam,et al.  Filamentous bacteriophage display of a bifunctional protein A::scFv fusion , 1998, Molecular biotechnology.

[51]  C. Barbas,et al.  Synthetic Human Antibodies: Selecting and Evolving Functional Proteins , 1995 .

[52]  H. Qiu,et al.  Identification of a Novel B Cell Epitope on the Nucleocapsid Protein of Porcine Reproductive and Respiratory Syndrome Virus by Phage Display , 2005, Virus Genes.

[53]  G. Weinstock,et al.  Mapping protein-ligand interactions using whole genome phage display libraries. , 1998, Gene.

[54]  N. Zinder,et al.  The morphogenetic signal of bacteriophage f1. , 1983, Virology.

[55]  T. Yomo,et al.  Construction and characterization of phage libraries displaying artificial proteins with random sequences. , 2000, Journal of bioscience and bioengineering.

[56]  A. Plückthun,et al.  Reliable cloning of functional antibody variable domains from hybridomas and spleen cell repertoires employing a reengineered phage display system. , 1997, Journal of immunological methods.

[57]  Chuanbin Mao,et al.  Nanocomposite Films Assembled from Genetically Engineered Filamentous Viruses and Gold Nanoparticles: Nanoarchitecture‐ and Humidity‐Tunable Surface Plasmon Resonance Spectra , 2009 .

[58]  P. Pavlík,et al.  A comprehensive analysis of filamentous phage display vectors for cytoplasmic proteins: an analysis with different fluorescent proteins , 2009, Nucleic acids research.

[59]  A. Folgori,et al.  A conformationally homogeneous combinatorial peptide library. , 1995, Journal of molecular biology.

[60]  T. Logtenberg,et al.  Leucine Zipper Dimerized Bivalent and Bispecific scFv Antibodies from a Semi-synthetic Antibody Phage Display Library (*) , 1996, The Journal of Biological Chemistry.

[61]  A. Pini,et al.  Design and Use of a Phage Display Library , 1998, The Journal of Biological Chemistry.

[62]  V. Petrenko,et al.  Diagnostic probes for Bacillus anthracis spores selected from a landscape phage library. , 2004, Clinical chemistry.

[63]  S. Sidhu Phage display in biotechnology and drug discovery , 2005 .

[64]  D. Marvin,et al.  Physical and Chemical Properties of Two New Small Bacteriophages , 1963, Nature.

[65]  U. Krengel,et al.  Light-chain shuffling results in successful phage display selection of functional prokaryotic-expressed antibody fragments to N-glycolyl GM3 ganglioside. , 2004, Journal of immunological methods.

[66]  F. Felici,et al.  Selection of antibody ligands from a large library of oligopeptides expressed on a multivalent exposition vector. , 1991, Journal of molecular biology.

[67]  Dong Men,et al.  Construction of bifunctional phage display for biological analysis and immunoassay. , 2010, Analytical biochemistry.

[68]  Parameters affecting the display of antibodies on phage. , 2005, Journal of immunological methods.

[69]  V. Petrenko,et al.  Vectors and Modes of Display , 2005 .

[70]  Andreas Plückthun,et al.  Signal sequences directing cotranslational translocation expand the range of proteins amenable to phage display , 2006, Nature Biotechnology.

[71]  Kim D Janda,et al.  A method for the generation of combinatorial antibody libraries using pIX phage display , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[72]  M. Geiser,et al.  Evaluation of antibodies fused to minor coat protein III and major coat protein VIII of bacteriophage M13. , 1995, Gene.

[73]  J. Fastrez,et al.  Construction and exploitation in model experiments of functional selection of a landscape library expressed from a phagemid. , 2002, Gene.

[74]  V. Petrenko,et al.  Thermostability of landscape phage probes , 2005, Analytical and bioanalytical chemistry.

[75]  W. Barnes,et al.  Construction of an M13 histidine-transducing phage: a single-stranded cloning vehicle with one EcoRI site. , 1979, Gene.

[76]  G. Cesareni,et al.  Modifying filamentous phage capsid: limits in the size of the major capsid protein. , 1995, Journal of molecular biology.

[77]  R. Ames,et al.  Isolation of neutralizing anti-C5a monoclonal antibodies from a filamentous phage monovalent Fab display library. , 1994, Journal of immunology.

[78]  A. Cattaneo,et al.  The use of phage display in neurobiology , 1995, Trends in Neurosciences.

[79]  T. Clackson,et al.  Phage display : a practical approach , 2004 .

[80]  G. Storm,et al.  Biosynthetically lipid‐modified human scFv fragments from phage display libraries as targeting molecules for immunoliposomes , 1996, FEBS letters.

[81]  B L Hall,et al.  A novel tumor-specific human single-chain Fv selected from an active specific immunotherapy phage display library. , 1998, Immunotechnology : an international journal of immunological engineering.

[82]  C. Shoemaker,et al.  Design and testing of PCR primers for the construction of scFv libraries representing the immunoglobulin repertoire of rats. , 2008, Journal of immunological methods.

[83]  P. Delepelaire Type I secretion in gram-negative bacteria. , 2004, Biochimica et biophysica acta.

[84]  Waldemar Vollmer,et al.  Type VI secretion delivers bacteriolytic effectors to target cells , 2011, Nature.

[85]  S. Ueberberg,et al.  Phage library-screening: A powerful approach for generation of targeting-agents specific for normal pancreatic islet-cells and islet-cell carcinoma in vivo , 2010, Regulatory Peptides.

[86]  H. Inoko,et al.  Human monoclonal anti-HCMV neutralizing antibody from phage display libraries. , 1998, Journal of virological methods.

[87]  S. Kidd,et al.  An improved filamentous helper phage for generating single-stranded plasmid DNA. , 1986, Gene.

[88]  R. Perham,et al.  Multiple display of foreign peptides on a filamentous bacteriophage. Peptides from Plasmodium falciparum circumsporozoite protein as antigens. , 1991, Journal of molecular biology.

[89]  M. Uhlén,et al.  A combinatorial library of an α-helical bacterial receptor domain , 1995 .

[90]  Daniele Sblattero,et al.  Exploiting recombination in single bacteria to make large phage antibody libraries , 2000, Nature Biotechnology.

[91]  J. Link,et al.  Selection and rapid purification of murine antibody fragments that bind a transition-state analog by phage display , 1994, Applied biochemistry and biotechnology.

[92]  A. V. van Zonneveld,et al.  Identification of functional interaction sites on proteins using bacteriophage-displayed random epitope libraries. , 1995, Gene.

[93]  Carlos F. Barbas,et al.  Phage display: a Laboratory manual , 2014 .

[94]  G. P. Smith,et al.  A new filamentous phage cloning vector: fd-tet. , 1980, Gene.

[95]  C. Tayapiwatana,et al.  Twin-arginine signal peptide attributes effective display of CD147 to filamentous phage , 2006, Applied Microbiology and Biotechnology.

[96]  Annette Fagerlund,et al.  Construction and characterization of a 9-mer phage display pVIII-library with regulated peptide density , 2008, Applied Microbiology and Biotechnology.