Design of a novel creep testing machine to investigate the creep life history of austenitic steel foil at elevated temperature

[1]  Min-chul Kim,et al.  Modified θ projection model-based constant-stress creep curve for alloy 690 steam generator tube material , 2021, Nuclear Engineering and Technology.

[2]  Zhigang Sun,et al.  An investigation of the nonlinear creep damage accumulation of different materials: Application of a novel damage model , 2021, Fatigue & Fracture of Engineering Materials & Structures.

[3]  Jin-quan Xu,et al.  A new creep constitutive relationship for high temperature alloys , 2021 .

[4]  J. Moverare,et al.  Microstructural evolution during high temperature dwell-fatigue of austenitic stainless steels , 2021 .

[5]  E. Mazza,et al.  Primary creep regeneration in 10%Cr martensitic steel: In-situ and ex-situ microstructure studies , 2020, Materials & Design.

[6]  N. Semicheva,et al.  Version of a mathematical model of purge ventilation system with a complex recuperative heat exchanger , 2021 .

[7]  Seyed Saeid Rahimian Koloor,et al.  Experimental and Numerical Analysis of Fatigue Life of Aluminum Al 2024-T351 at Elevated Temperature , 2020, Metals.

[8]  Seyed Saeid Rahimian Koloor,et al.  Using Finite Element Approach for Crashworthiness Assessment of a Polymeric Auxetic Structure Subjected to the Axial Loading , 2020, Polymers.

[9]  Z. Xiang,et al.  Long-term creep rupture strength prediction for a new grade of 9Cr martensitic creep resistant steel (G115)—An application of a new tensile creep rupture model , 2020 .

[10]  D. Schliephake,et al.  Creep of an oxidation resistant coated Mo-9Si-8B alloy , 2020, Intermetallics.

[11]  X. Wu,et al.  Creep Performance Modeling of Modified 9Cr-1Mo Steels with Oxidation , 2019, Metallurgical and Materials Transactions A.

[12]  Z. Xiang,et al.  Rationalization of Short-Term Creep Test Data and Prediction of Long-Term Creep Strengths of a Fe-20Cr-25Ni (Wt Pct) Austenitic Stainless Steel (Alloy 709) , 2019, Metallurgical and Materials Transactions A.

[13]  Rong Liu,et al.  Effects of oxidation-resistant coating on creep behavior of modified 9Cr-1Mo steels , 2019, Materials Science and Engineering: A.

[14]  A. Nejad,et al.  Steady State Creep Characteristics of a Ferritic Steel at Elevated Temperature: An Experimental and Numerical Study , 2018 .

[15]  A. Tumanov,et al.  Creep‐fracture resistance parameters determination based on stress and ductility damage models , 2018 .

[16]  Seyed Saeid Rahimian Koloor,et al.  Effects of Sample and Indenter Configurations of Nanoindentation Experiment on the Mechanical Behavior and Properties of Ductile Materials , 2018, Metals.

[17]  H. Osman,et al.  Creep ruptures of AISI 347 austenitic stainless steel foils at elevated temperature of 750 ℃ , 2017 .

[18]  X. Wu,et al.  Deformation-mechanism-based modeling of creep behavior of modified 9Cr-1Mo steel , 2017 .

[19]  R. Alipour,et al.  Creep behaviour characterisation of a ferritic steel alloy based on the modified theta-projection data at an elevated temperature , 2016 .

[20]  P. Hendriksen,et al.  Creep behaviour of porous metal supports for solid oxide fuel cells , 2014 .

[21]  Y. Lin,et al.  Modeling the creep behavior of 2024-T3 Al alloy , 2013 .

[22]  Shan-Tung Tu,et al.  Simulations of creep crack growth in 316 stainless steel using a novel creep-damage model , 2013 .

[23]  Xijia Wu,et al.  A True-Stress Creep Model Based on Deformation Mechanisms for Polycrystalline Materials , 2012, Journal of Materials Engineering and Performance.

[24]  N. Shinya,et al.  Copper, Boron, and Cerium Additions in Type 347 Austenitic Steel to Improve Creep Rupture Strength , 2012, Metallurgical and Materials Transactions A.

[25]  B. Pint,et al.  Performance of Al‐rich oxidation resistant coatings for Fe‐base alloys , 2011 .

[26]  C. Davies Predicting creep crack initiation in austenitic and ferritic steels using the creep toughness parameter and time‐dependent failure assessment diagram , 2009 .

[27]  M. Ruggles‐Wrenn,et al.  Effects of environment on creep behavior of two oxide/oxide ceramic–matrix composites at 1200 °C , 2008 .

[28]  K. Laha,et al.  Some chemical and microstructural factors influencing creep cavitation resistance of austenitic stainless steels , 2007 .

[29]  N. Shinya,et al.  An advanced creep cavitation resistance Cu-containing 18Cr-12Ni-Nb austenitic stainless steel , 2007 .

[30]  N. Shinya,et al.  Self-healing Effect of Boron Nitride Precipitation on Creep Cavitation in Austenitic Stainless Steel , 2006 .

[31]  David R Hayhurst,et al.  Creep constitutive equations for a 0.5Cr 0.5 Mo 0.25V ferritic steel in the temperature range 565°C-675°C , 2005 .

[32]  N. Shinya,et al.  Improved creep strength and creep ductility of type 347 austenitic stainless steel through the self-healing effect of boron for creep cavitation , 2005 .

[33]  M. W. Spindler,et al.  The multiaxial creep ductility of austenitic stainless steels , 2004 .

[34]  W. J. Plumbridge,et al.  The constitutive creep equation for a eutectic Sn-Ag alloy using the modified theta-projection concept , 2003 .

[35]  M. Law,et al.  Finite element analysis of creep using Theta projection data , 1998 .

[36]  A. K. Koul,et al.  Grain boundary sliding in the presence of grain boundary precipitates during transient creep , 1995 .

[37]  B. Wilshire,et al.  The θ projection concept—A model-based approach to design and life extension of engineering plant , 1992 .

[38]  D. R. Hayhurst,et al.  Multi-axial creep rupture of a model structure using a two parameter material model , 1990 .

[39]  Hiroshi Oikawa,et al.  Comments on “exponential descriptions of normal creep curves by S.G.R. Brown, R.W. Evans and B. Wilshire” , 1987 .

[40]  Steve Brown,et al.  Creep strain and creep life prediction for the cast nickel-based superalloy IN-100 , 1986 .

[41]  B. F. Dyson,et al.  Creep of Nimonic 80A in torsion and tension , 1977 .

[42]  F. C. Monkman An Empirical Relationship between Rupture Life and Minimum Creep Rate in Creep Rupture Tests , 1956 .

[43]  F. Larson,et al.  A Time-Temperature Relationship for Rupture and Creep Stresses , 1952, Journal of Fluids Engineering.

[44]  R. W. Bailey,et al.  The Utilization of Creep Test Data in Engineering Design , 1935 .