Emergence of Gricean Maxims from Multi-Agent Decision Theory

Grice characterized communication in terms of the cooperative principle, which enjoins speakers to make only contributions that serve the evolving conversational goals. We show that the cooperative principle and the associated maxims of relevance, quality, and quantity emerge from multi-agent decision theory. We utilize the Decentralized Partially Observable Markov Decision Process (Dec-POMDP) model of multi-agent decision making which relies only on basic definitions of rationality and the ability of agents to reason about each other’s beliefs in maximizing joint utility. Our model uses cognitively-inspired heuristics to simplify the otherwise intractable task of reasoning jointly about actions, the environment, and the nested beliefs of other actors. Our experiments on a cooperative language task show that reasoning about others’ belief states, and the resulting emergent Gricean communicative behavior, leads to significantly improved task performance.

[1]  Jerry R. Hobbs,et al.  Interpretation as Abduction , 1993, Artif. Intell..

[2]  Michael Franke,et al.  Optimal Reasoning About Referential Expressions , 2012 .

[3]  Candace L. Sidner,et al.  Attention, Intentions, and the Structure of Discourse , 1986, CL.

[4]  David DeVault,et al.  An Information-State Approach to Collaborative Reference , 2005, ACL.

[5]  付伶俐 打磨Using Language,倡导新理念 , 2014 .

[6]  Peter Gärdenfors,et al.  On the logic of theory change: Partial meet contraction and revision functions , 1985, Journal of Symbolic Logic.

[7]  John N. Tsitsiklis,et al.  The Complexity of Markov Decision Processes , 1987, Math. Oper. Res..

[8]  H. V. VAN TONGEREN [The use of language]. , 1986, Tijdschrift voor diergeneeskunde.

[9]  Noah D. Goodman,et al.  Knowledge and implicature: Modeling language understanding as social cognition , 2012, CogSci.

[10]  Seymour Rosenberg,et al.  Speakers' and Listeners' Processes in a Word-Communication Task , 1964, Science.

[11]  Christopher Potts,et al.  Goal-Driven Answers in the CardsDialogue Corpus , 2012 .

[12]  Nathanael Chambers,et al.  PLOW: A Collaborative Task Learning Agent , 2007, AAAI.

[13]  Robert van Rooy Questioning to Resolve Decision Problems , 2003 .

[14]  Brady Clark,et al.  Communicating with Cost-based Implicature: a Game-Theoretic Approach to Ambiguity , 2012 .

[15]  R. Rooij Questioning to resolve decision problems , 2003 .

[16]  C. Raymond Perrault,et al.  A Plan-Based Analysis of Indirect Speech Act , 1980, CL.

[17]  Henry A. Kautz,et al.  Reasoning about plans , 1991, Morgan Kaufmann series in representation and reasoning.

[18]  Michael C. Frank,et al.  Predicting Pragmatic Reasoning in Language Games , 2012, Science.

[19]  Michael Franke,et al.  Signal to act : game theory in pragmatics , 2009 .

[20]  Leslie Pack Kaelbling,et al.  Learning Policies for Partially Observable Environments: Scaling Up , 1997, ICML.

[21]  P G rdenfors,et al.  Knowledge in flux: modeling the dynamics of epistemic states , 1988 .

[22]  N. Arnett Goal-driven Answers in the Cards Dialogue Corpus , 2012 .

[23]  Emiel Krahmer,et al.  Computational Generation of Referring Expressions: A Survey , 2012, CL.

[24]  P. J. Gmytrasiewicz,et al.  A Framework for Sequential Planning in Multi-Agent Settings , 2005, AI&M.

[25]  Dan Klein,et al.  A Game-Theoretic Approach to Generating Spatial Descriptions , 2010, EMNLP.

[26]  David Beaver Pragmatics , and That ’ s an Order , 2022 .

[27]  Milica Gasic,et al.  The Hidden Information State model: A practical framework for POMDP-based spoken dialogue management , 2010, Comput. Speech Lang..

[28]  Peter Gärdenfors,et al.  Knowledge in Flux: Modeling the Dynamics of Epistemic States , 2008 .

[29]  S. Hansson,et al.  Twenty-Five Years of Research in Belief Change , 2011 .

[30]  Territoire Urbain,et al.  Convention , 1955, Hidden Nature.

[31]  Neil Immerman,et al.  The Complexity of Decentralized Control of Markov Decision Processes , 2000, UAI.

[32]  Steve J. Young,et al.  Bayesian update of dialogue state: A POMDP framework for spoken dialogue systems , 2010, Comput. Speech Lang..

[33]  M. Tarr,et al.  Spatial language and spatial representation , 1995, Cognition.

[34]  Milind Tambe,et al.  The Communicative Multiagent Team Decision Problem: Analyzing Teamwork Theories and Models , 2011, J. Artif. Intell. Res..

[35]  Michael C. Frank,et al.  Ad-hoc scalar implicature in adults and children , 2011, CogSci.

[36]  David DeVault,et al.  Contribution tracking: participating in task-oriented dialogue under uncertainty , 2008 .

[37]  Nikos A. Vlassis,et al.  Multiagent Planning Under Uncertainty with Stochastic Communication Delays , 2008, ICAPS.

[38]  Witold Lukaszewicz,et al.  Reasoning about Plans , 1997, IJCAI.

[39]  Siobhan Chapman Logic and Conversation , 2005 .

[40]  Robert Dale,et al.  Computational Interpretations of the Gricean Maxims in the Generation of Referring Expressions , 1995, Cogn. Sci..

[41]  Nikos A. Vlassis,et al.  Perseus: Randomized Point-based Value Iteration for POMDPs , 2005, J. Artif. Intell. Res..

[42]  David DeVault,et al.  Enlightened Update: A Computational Architecture for Presupposition and Other Pragmatic Phenomena , 2006 .

[43]  Reinhard Blutner,et al.  Lexical Pragmatics , 1998, J. Semant..