Models and numerical methods for time- and energy-dependent particle transport

Particles passing through a medium can be described by the Boltzmann transport equation. Therein, all physical interactions of particles with matter are given by cross sections. We compare different analytical models of cross sections for photons, electrons and protons to state-of-the-art databases. The large dimensionality of the transport equation and its integro-differential form make it analytically difficult and computationally costly to solve. In this work, we focus on the following approximative models to the linear Boltzmann equation: (i) the time-dependent simplified PN (SPN) equations, (ii) the M1 model derived from entropy-based closures and (iii) a new perturbed M1 model derived from a perturbative entropy closure. In particular, an asymptotic analysis for SPN equations is presented and confirmed by numerical computations in 2D. Moreover, we design an explicit Runge-Kutta discontinuous Galerkin (RKDG) method to the M1 model of radiative transfer in slab geometry and construct a scheme ensuring the realizability of the moment variables. Among other things, M1 numerical results are compared with an analytical solution in a Riemann problem and the Marshak wave problem is considered. Additionally, we rigorously derive a new hierarchy of kinetic moment models in the context of grey photon transport in one spatial dimension. Numerical examples, such as the two beam instability or the analytical benchmark due to Su and Olson [173], are shown for the perturbed M1 model and compared to the standard M1 as well as transport solutions.

[1]  L. M. M.-T. Spherical Harmonics: an Elementary Treatise on Harmonic Functions, with Applications , 1928, Nature.

[2]  Xiangxiong Zhang,et al.  On maximum-principle-satisfying high order schemes for scalar conservation laws , 2010, J. Comput. Phys..

[3]  Sally A. McKee,et al.  Hitting the memory wall: implications of the obvious , 1995, CARN.

[4]  Chi-Wang Shu,et al.  Runge-Kutta Discontinuous Galerkin Method Using WENO Limiters , 2005, SIAM J. Sci. Comput..

[5]  Edward W. Larsen,et al.  Generalized Fokker-Planck Approximations of Particle Transport with Highly Forward-Peaked Scattering , 2001 .

[6]  Ansgar Jüngel,et al.  A Hierarchy of Diffusive Higher-Order Moment Equations for Semiconductors , 2007, SIAM J. Appl. Math..

[7]  Henning Struchtrup,et al.  Kinetic schemes and boundary conditions for moment equations , 2000 .

[8]  J. H. Hubbell,et al.  Atomic form factors, incoherent scattering functions, and photon scattering cross sections , 1975 .

[9]  Edward W. Larsen Diffusion theory as an asymptotic limit of transport theory for nearly critical systems with small mean free paths , 1980 .

[10]  M. Junk,et al.  Maximum entropy moment system of the semiconductor Boltzmann equation using Kane’s dispersion relation , 2005 .

[11]  B. Jones,et al.  Radiotherapy for the future , 2005, BMJ : British Medical Journal.

[12]  Frank Verhaegen,et al.  Monte Carlo modelling of external radiotherapy photon beams. , 2003, Physics in medicine and biology.

[13]  Simon M. Pimblott,et al.  Effect of Elastic Collisions on Energy Deposition by Electrons in Water , 1997 .

[14]  Edward W. Larsen,et al.  The Asymptotic Diffusion Limit of Discretized Transport Problems , 1992 .

[15]  Michael Junk,et al.  Domain of Definition of Levermore's Five-Moment System , 1998 .

[16]  J. Jeans,et al.  The Equations of Radiative Transfer of Energy , 1917 .

[17]  J. Sempau,et al.  Experimental benchmarks of the Monte Carlo code penelope , 2003 .

[18]  Gordon L. Olson,et al.  Second-order time evolution of PN equations for radiation transport , 2009, J. Comput. Phys..

[19]  Petri Kotiluoto,et al.  Adaptive tree multigrids and simplified spherical harmonics approximation in deterministic neutral and charged particle transport , 2007 .

[20]  Kyeong Sam Oh A Study of Low Order Spherical Harmonic Closures for Rapid Transients in Radiation Transport. Radiation Transport. , 2009 .

[21]  Benjamin Seibold,et al.  Asymptotic derivation and numerical investigation of time-dependent simplified PN equations , 2013, J. Comput. Phys..

[22]  N. Mason,et al.  Cross Sections for Electron Collisions with Water Molecules , 2005 .

[23]  Edward W. Larsen,et al.  Light transport in biological tissue based on the simplified spherical harmonics equations , 2006, J. Comput. Phys..

[24]  Rodolphe Turpault A consistent multigroup model for radiative transfer and its underlying mean opacities , 2005 .

[25]  Chi-Wang Shu TVB uniformly high-order schemes for conservation laws , 1987 .

[26]  Benjamin Seibold,et al.  Optimal prediction for moment models: crescendo diffusion and reordered equations , 2009, 0902.0076.

[27]  J. Keller,et al.  Asymptotic solution of neutron transport problems for small mean free paths , 1974 .

[28]  C. Møller Zur Theorie des Durchgangs schneller Elektronen durch Materie , 1932 .

[29]  Cory D. Hauck Entropy-Based Moment Closures in Semiconductor Models , 2006 .

[30]  K. Stamnes,et al.  Radiative Transfer in the Atmosphere and Ocean , 1999 .

[31]  Wanzhen Huang Heuristic solutions to polynomial moment problems with some convex entropic objectives , 2005, Numerical Algorithms.

[32]  Edward W. Larsen,et al.  The simplified P2 approximation , 1996 .

[33]  J. M. Smit,et al.  HYPERBOLICITY AND CRITICAL POINTS IN TWO-MOMENT APPROXIMATE RADIATIVE TRANSFER , 1997 .

[34]  Ryan G. McClarren,et al.  Robust and accurate filtered spherical harmonics expansions for radiative transfer , 2010, J. Comput. Phys..

[35]  H. Palmans,et al.  GEANT4 SIMULATION OF AN OCULAR PROTON BEAM AND BENCHMARK AGAINST OTHER MONTE CARLO CODES , 2005 .

[36]  Ryan G. McClarren,et al.  Semi-implicit time integration for PN thermal radiative transfer , 2008, J. Comput. Phys..

[37]  H. Krieger,et al.  Grundlagen der Strahlungsphysik und des Strahlenschutzes , 2004 .

[38]  Sally A. McKee,et al.  Bounds on Memory Bandwidth in Streamed Computations , 1995, Euro-Par.

[39]  Gordon L. Olson,et al.  An analytical benchmark for non-equilibrium radiative transfer in an isotropically scattering medium , 1997 .

[40]  Bernardo Cockburn,et al.  An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection-diffusion equations , 2009, J. Comput. Phys..

[41]  Alexander D Klose,et al.  Excitation-resolved fluorescence tomography with simplified spherical harmonics equations , 2011, Physics in medicine and biology.

[42]  Edward W. Larsen,et al.  The P N Theory as an Asymptotic Limit of Transport Theory in Planar Geometry—I: Analysis , 1991 .

[43]  James Paul Holloway,et al.  A QUASI-STATIC CLOSURE FOR 3 RD ORDER SPHERICAL HARMONICS TIME-DEPENDENT RADIATION TRANSPORT IN 2-D , 2009 .

[44]  E. Lewis,et al.  Computational Methods of Neutron Transport , 1993 .

[45]  Ryan G. McClarren Theoretical Aspects of the Simplified Pn Equations , 2010 .

[46]  Morel,et al.  ASYMPTOTIC DERIVATION OF THE SIMPLIFIED PN EQUATIONS , 1998 .

[47]  Axel Klar,et al.  Validation of simplified PN models for radiative transfer in combustion systems , 2006 .

[48]  Vittorio Romano,et al.  Exact Maximum Entropy Closure of the Hydrodynamical Model for Si Semiconductors: The 8-Moment Case , 2009, SIAM J. Appl. Math..

[49]  Sze Chun Wong,et al.  A weighted essentially non-oscillatory numerical scheme for a multi-class traffic flow model on an inhomogeneous highway , 2006, J. Comput. Phys..

[50]  Edgar Olbrant,et al.  A realizability-preserving discontinuous Galerkin method for the M1 model of radiative transfer , 2012, J. Comput. Phys..

[51]  Chi-Wang Shu,et al.  Local Discontinuous Galerkin Methods for High-Order Time-Dependent Partial Differential Equations , 2009 .

[52]  J. E. Morel An improved Fokker-Planck angular differencing scheme , 1985 .

[53]  S. Osher Riemann Solvers, the Entropy Condition, and Difference , 1984 .

[54]  R. E. Marshak,et al.  Effect of Radiation on Shock Wave Behavior , 1958 .

[55]  J. Ziegler Stopping of energetic light ions in elemental matter , 1999 .

[56]  B. Perthame,et al.  Boltzmann type schemes for gas dynamics and the entropy property , 1990 .

[57]  Hailiang Liu,et al.  The Direct Discontinuous Galerkin (DDG) Methods for Diffusion Problems , 2008, SIAM J. Numer. Anal..

[58]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[59]  James Paul Holloway,et al.  On solutions to the Pn equations for thermal radiative transfer , 2008, J. Comput. Phys..

[60]  J. Schneider,et al.  Entropic approximation in kinetic theory , 2004 .

[61]  Ryan G. McClarren,et al.  Anti-diffusive radiation flow in the cooling layer of a radiating shock , 2010 .

[62]  B A Fraass,et al.  Electron dose calculations using the Method of Moments. , 1997, Medical physics.

[63]  Edward W. Larsen,et al.  A three-dimensional time-dependent unstructured tetrahedral-mesh SPN method , 1996 .

[64]  Weimin Han,et al.  On simplified spherical harmonics equations for the radiative transfer equation , 2011 .

[65]  Jim E. Morel,et al.  Methods for hyperbolic systems with stiff relaxation , 2002 .

[66]  Patrick Knupp,et al.  Code Verification by the Method of Manufactured Solutions , 2000 .