Metamaterial Dispersion Engineering Concepts and Applications

Metamaterial dispersion engineering is presented as a general concept for engineering the phase versus frequency response of microwave materials and devices. Two categories of metamaterials are considered, composite right/left-handed (CRLH) transmission line and multiscale ferromagnetic nanowire (FMNW) metamaterials. The dispersive Drude properties of CRLH metamaterials are derived and corresponding application examples are described in terms of CRLH dominant Taylor dispersive parameters: a tight broadband coupled-line coupler (phase velocity parameter), an ultra-wideband pulse position modulator transmitter (group velocity parameter), and a leaky-wave antenna based real-time spectrum analyzer (group velocity dispersion parameter). FMNW metamaterials are discussed as a double-Lorentz example of a multiscale metamaterial with unique properties, and their applications are illustrated with the example of a dual-band edge-mode isolator based on the recently discovered double ferromagnetic resonance.

[1]  G. V. Chester,et al.  Solid State Physics , 2000 .

[2]  Christophe Caloz,et al.  Dual-band integrated self-biased edge-mode isolator based on the double ferromagnetic resonance of a bistable nanowire substrate , 2010, 2010 IEEE MTT-S International Microwave Symposium.

[3]  Frank B. Gross,et al.  Frontiers in Antennas: Next Generation Design & Engineering , 2010 .

[4]  C. Caloz,et al.  Double ferromagnetic resonance in nanowire arrays , 2009 .

[5]  C. Caloz,et al.  Generalized Coupled-Mode Approach of Metamaterial Coupled-Line Couplers: Coupling Theory, Phenomenological Explanation, and Experimental Demonstration , 2007, IEEE Transactions on Microwave Theory and Techniques.

[6]  J. Kong Electromagnetic Wave Theory , 1986 .

[7]  Christophe Caloz,et al.  Analog Signal Processing in Transmission Line Metamaterial Structures , 2009 .

[8]  R. Fox,et al.  Classical Electrodynamics, 3rd ed. , 1999 .

[9]  Tatsuo Itoh,et al.  Electromagnetic metamaterials : transmission line theory and microwave applications : the engineering approach , 2005 .

[10]  S. Gupta,et al.  Microwave Analog Real-Time Spectrum Analyzer (RTSA) Based on the Spectral–Spatial Decomposition Property of Leaky-Wave Structures , 2009, IEEE Transactions on Microwave Theory and Techniques.

[11]  P. Russer,et al.  A 3-D Isotropic Left-Handed Metamaterial Based on the Rotated Transmission-Line Matrix (TLM) Scheme , 2007, IEEE Transactions on Microwave Theory and Techniques.

[12]  Christophe Caloz,et al.  Effective permeability tensor and double resonance of interacting bistable ferromagnetic nanowires , 2009 .

[13]  R. Harrington Time-Harmonic Electromagnetic Fields , 1961 .

[14]  S. Gupta,et al.  Experimental Demonstration and Characterization of a Tunable CRLH Delay Line System for Impulse/Continuous Wave , 2007, IEEE Microwave and Wireless Components Letters.

[15]  L. Brillouin,et al.  Wave Propagation in Periodic Structures , 1946 .

[16]  C. Balanis Antenna theory , 1982 .

[17]  Alejandro Álvarez Melcón,et al.  Spatio-temporal Talbot phenomenon using metamaterial composite right/left-handed leaky-wave antennas , 2008 .

[18]  S. Gupta,et al.  Compressive Receiver Using a CRLH-Based Dispersive Delay Line for Analog Signal Processing , 2009, IEEE Transactions on Microwave Theory and Techniques.

[19]  R. Bansal,et al.  Antenna theory , 1983, IEEE Antennas and Propagation Society Newsletter.

[20]  K. Balmain,et al.  Negative Refraction Metamaterials: Fundamental Principles and Applications , 2005 .

[21]  C. Caloz,et al.  CRLH Delay Line Pulse Position Modulation Transmitter , 2008, IEEE Microwave and Wireless Components Letters.

[22]  Christophe Caloz,et al.  Perspectives on EM metamaterials , 2009 .

[23]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.