A robust Nitsche's formulation for interface problems with spline‐based finite elements
暂无分享,去创建一个
Isaac Harari | John E. Dolbow | Wen Jiang | Chandrasekhar Annavarapu | J. Dolbow | I. Harari | Wen Jiang | C. Annavarapu | Chandrasekhar Annavarapu
[1] Grégory Legrain,et al. High order X-FEM and levelsets for complex microstructures: Uncoupling geometry and approximation , 2012 .
[2] David L. Chopp,et al. A hybrid extended finite element/level set method for modeling phase transformations , 2002 .
[3] Stéphane Bordas,et al. Finite element analysis on implicitly defined domains: An accurate representation based on arbitrary parametric surfaces , 2011 .
[4] Isaac Harari,et al. An efficient finite element method for embedded interface problems , 2009 .
[5] J. Dolbow,et al. Imposing Dirichlet boundary conditions with Nitsche's method and spline‐based finite elements , 2010 .
[6] J. Dolbow,et al. Microdomain evolution on giant unilamellar vesicles , 2013, Biomechanics and modeling in mechanobiology.
[7] Markus Kästner,et al. Higher‐order extended FEM for weak discontinuities – level set representation, quadrature and application to magneto‐mechanical problems , 2013 .
[8] Vinh Phu Nguyen,et al. Nitsche’s method for two and three dimensional NURBS patch coupling , 2013, 1308.0802.
[9] Ted Belytschko,et al. A finite element method for crack growth without remeshing , 1999 .
[10] John E. Dolbow,et al. A robust Nitsche’s formulation for interface problems , 2012 .
[11] J. Dolbow,et al. Robust imposition of Dirichlet boundary conditions on embedded surfaces , 2012 .
[12] Nicolas Moës,et al. Studied X-FEM enrichment to handle material interfaces with higher order finite element , 2010 .
[13] Ernst Rank,et al. Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries , 2014 .
[14] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .
[15] Tod A. Laursen,et al. On methods for stabilizing constraints over enriched interfaces in elasticity , 2009 .
[16] Markus Kästner,et al. Development of a quadratic finite element formulation based on the XFEM and NURBS , 2011 .
[17] Thomas-Peter Fries,et al. Higher‐order XFEM for curved strong and weak discontinuities , 2009 .
[18] J. Peraire,et al. A high‐order hybridizable discontinuous Galerkin method for elliptic interface problems , 2013 .
[19] Helio J. C. Barbosa,et al. The finite element method with Lagrange multiplier on the boundary: circumventing the Babuscka-Brezzi condition , 1991 .
[20] John E. Dolbow,et al. Stable imposition of stiff constraints in explicit dynamics for embedded finite element methods , 2012 .
[21] Haim Waisman,et al. A spline‐based enrichment function for arbitrary inclusions in extended finite element method with applications to finite deformations , 2013 .
[22] Tod A. Laursen,et al. A Nitsche embedded mesh method , 2012 .
[23] Michael Griebel,et al. A Particle-Partition of Unity Method Part V: Boundary Conditions , 2003 .
[24] John E. Dolbow,et al. A Nitsche stabilized finite element method for frictional sliding on embedded interfaces. Part II: Intersecting interfaces , 2013 .