The Project 8 Neutrino Mass Experiment

Measurements of the β− spectrum of tritium give the most precise direct limits on neutrino mass. Project 8 will investigate neutrino mass using Cyclotron Radiation Emission Spectroscopy (CRES) with an atomic tritium source. CRES is a new experimental technique that has the potential to surmount the systematic and statistical limitations of current-generation direct measurement methods. Atomic tritium avoids an irreducible systematic uncertainty associated with the final states populated by the decay of molecular tritium. Project 8 will proceed in a phased approach toward a goal of 40 meV/c2 neutrino-mass sensitivity. Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021). ∗josephf@mit.edu †Present Address: LeoLabs, Inc., Menlo Park, CA 94025, USA ‡pettus@indiana.edu §rghr@uw.edu ¶Present Address: Booz Allen Hamilton, San Antonio, Texas, 78226, USA ‖brent.vandevender@pnnl.gov

[1]  Karsten M. Heeger,et al.  Determining the neutrino mass with cyclotron radiation emission spectroscopy-Project 8 , 2017, 1703.02037.

[2]  N. Wandkowsky,et al.  Kassiopeia: a modern, extensible C++ particle tracking package , 2016, 1612.00262.

[3]  R.G.H. Robertson,et al.  Assessment of molecular effects on neutrino mass measurements from tritium β decay , 2015, 1502.03497.

[4]  L. Rosenberg,et al.  Single-Electron Detection and Spectroscopy via Relativistic Cyclotron Radiation. , 2014, Physical review letters.

[5]  B. H. LaRoque,et al.  Project 8: Determining neutrino mass from tritium beta decay using a frequency-based method , 2013, 1309.7093.

[6]  A. Hopkins,et al.  Development of a Relic Neutrino Detection Experiment at PTOLEMY: Princeton Tritium Observatory for Light, Early-Universe, Massive-Neutrino Yield , 2013, 1307.4738.

[7]  G. Karagiorgi,et al.  Light Sterile Neutrinos: A White Paper , 2012, 1204.5379.

[8]  I. G. Park,et al.  Observation of reactor electron antineutrinos disappearance in the RENO experiment. , 2012, Physical review letters.

[9]  L. Y. Wang,et al.  Observation of electron-antineutrino disappearance at Daya Bay. , 2012, Physical review letters.

[10]  Tejpreet Singh Golan,et al.  Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam. , 2011, Physical review letters.

[11]  M. I. O. Technology,et al.  Relativistic cyclotron radiation detection of tritium decay electrons as a new technique for measuring the neutrino mass , 2009, 0904.2860.

[12]  T. V. Bullard,et al.  Independent measurement of the total active 8B solar neutrino flux using an array of 3He proportional counters at the Sudbury Neutrino Observatory. , 2008, Physical review letters.

[13]  Evaporative Cooling of Atoms to Quantum Degeneracy in an Optical Dipole Trap , 2007 .

[14]  D. Gu'ery-Odelin,et al.  Evaporative cooling of a guided rubidium atomic beam (9 pages) , 2005, cond-mat/0505709.

[15]  B. A. Mamyrin,et al.  Half-life and f T 1 / 2 value for the bare triton , 2005 .

[16]  S Hatakeyama,et al.  First results from KamLAND: evidence for reactor antineutrino disappearance. , 2003, Physical review letters.

[17]  J. Farine,et al.  Measurement of the rate of νe+d → p+p+e− interactions produced by 8B solar neutrinos at the Sudbury Neutrino Observatory , 2002 .

[18]  F. Gatti Direct measurements of neutrino mass , 2002 .

[19]  R. C. Allen,et al.  Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory. , 2002, Physical review letters.

[20]  Sáenz,et al.  Improved molecular final-state distribution of HeT+ for the beta-decay process of T2 , 2000, Physical review letters.

[21]  E. Mandonnet,et al.  Evaporative cooling of an atomic beam , 1999, cond-mat/9909378.

[22]  The Super-Kamiokande Collaboration,et al.  Evidence for oscillation of atmospheric neutrinos , 1998, hep-ex/9807003.

[23]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[24]  Richard G. Geyer,et al.  The NIST 60-Millimeter Diameter Cylindrical Cavity Resonator: Performance Evaluation for Permittivity Measurements , 1993 .

[25]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[26]  Hess,et al.  Evaporative cooling of magnetically trapped and compressed spin-polarized hydrogen. , 1986, Physical review. B, Condensed matter.

[27]  Lagendijk,et al.  Spin exchange and dipolar relaxation rates in atomic hydrogen: Lifetimes in magnetic traps. , 1986, Physical review. B, Condensed matter.

[28]  J. Walraven,et al.  Helium‐temperature beam source of atomic hydrogen , 1982 .

[29]  S. Weinberg Universal neutrino degeneracy , 1962 .

[30]  A. Straiton,et al.  Design of Open-Ended Microwave Resonant Cavities (Correspondence) , 1959 .

[31]  M. C. Thompson,et al.  End Plate Modification of X-Band TE/sub O11/, Cavity Resonators (Correspondence) , 1959 .