Anisotropic versions of the Brezis-Van Schaftingen-Yung approach at $s=1$ and $s=0$
暂无分享,去创建一个
[1] L. Grafakos. Classical Fourier Analysis , 2010 .
[2] Petru Mironescu,et al. Limiting embedding theorems forWs,p whens ↑ 1 and applications , 2002 .
[3] Deping Ye,et al. Anisotropic Sobolev Capacity with Fractional Order , 2014, Canadian Journal of Mathematics.
[4] M. Ludwig. Anisotropic fractional Sobolev norms , 2013, 1304.0703.
[5] Po-Lam Yung,et al. Going to Lorentz when fractional Sobolev, Gagliardo and Nirenberg estimates fail , 2021 .
[6] G. Paouris,et al. Relative entropy of cone measures and Lp centroid bodies , 2009, 0909.4361.
[7] C. Bianchini,et al. Some overdetermined problems related to the anisotropic capacity , 2018, Journal of Mathematical Analysis and Applications.
[8] A. Figalli,et al. Symmetry results for critical anisotropic p-Laplacian equations in convex cones , 2019, Geometric and Functional Analysis.
[9] M. Ludwig. Anisotropic fractional perimeters , 2013, 1304.0699.
[10] R. E. Castillo,et al. An Introductory Course in Lebesgue Spaces , 2016 .
[11] J. Bourgain,et al. Another look at Sobolev spaces , 2001 .
[12] R. Ambartzumian. Stochastic and integral geometry , 1987 .
[13] E. Lutwak,et al. Blaschke-Santaló inequalities , 1997 .
[14] M. Ludwig. Ellipsoids and matrix-valued valuations , 2003 .
[15] A. Figalli,et al. Sharp stability theorems for the anisotropic Sobolev and log-Sobolev inequalities on functions of bounded variation , 2013 .
[16] Po-Lam Yung,et al. A new formula for the $L^p$ norm , 2021, 2102.09657.
[17] Minkowski Valuations,et al. Minkowski Valuations , 2004 .
[18] Arkady Poliakovsky. Some remarks on a formula for Sobolev norms due to Brezis, Van Schaftingen and Yung , 2021, Journal of Functional Analysis.
[19] E. Lutwak,et al. A new ellipsoid associated with convex bodies , 2000 .
[20] Vladimir Maz'ya,et al. On the Bourgain, Brezis, and Mironescu Theorem Concerning Limiting Embeddings of Fractional Sobolev Spaces , 2003 .
[21] Bo'az Klartag,et al. Centroid Bodies and the Logarithmic Laplace Transform - A Unified Approach , 2011, 1103.2985.
[22] C. Bianchini,et al. Wulff shape characterizations in overdetermined anisotropic elliptic problems , 2017, 1703.07111.
[23] Vladyslav Yaskin,et al. Centroid bodies and comparison of volumes , 2006 .
[24] E. Valdinoci,et al. Hitchhiker's guide to the fractional Sobolev spaces , 2011, 1104.4345.
[25] Erwin Lutwak,et al. Orlicz centroid bodies , 2010 .
[26] M. Squassina,et al. On anisotropic Sobolev spaces , 2017, Communications in Contemporary Mathematics.
[27] G. Paouris. Concentration of mass on convex bodies , 2006 .
[28] Po-Lam Yung,et al. A surprising formula for Sobolev norms , 2021, Proceedings of the National Academy of Sciences.
[29] Grigoris Paouris,et al. A stability result for mean width of Lp-centroid bodies , 2007 .
[30] Ali Maalaoui,et al. Characterizations of anisotropic high order Sobolev spaces , 2018, Asymptot. Anal..
[31] E. Lutwak,et al. The Cramer-Rao inequality for star bodies , 2002 .
[32] G. Leng,et al. On the Lp affine isoperimetric inequalities , 2011 .
[33] Erwin Lutwak,et al. Moment-entropy inequalities , 2004 .
[34] Pierre-Louis Lions,et al. Convex symmetrization and applications , 1997 .
[35] Franz E Schuster,et al. General $L_p$ affine isoperimetric inequalities , 2008, 0809.1983.
[36] Lukas Parapatits,et al. SL(n)‐covariant Lp‐Minkowski valuations , 2012, J. Lond. Math. Soc..
[37] D. Ma. Asymmetric anisotropic fractional Sobolev norms , 2014, 1410.5940.
[38] Po-Lam Yung,et al. A new formula for the L norm , 2021 .
[39] C. Bianchini,et al. An overdetermined problem for the anisotropic capacity , 2015, Calculus of Variations and Partial Differential Equations.
[40] C. Villani,et al. A MASS-TRANSPORTATION APPROACH TO SHARP SOBOLEV AND GAGLIARDO-NIRENBERG INEQUALITIES , 2004 .