Modeling sand wave characteristics on the Belgian Continental Shelf and in the Calais-Dover Strait

[1] The capability of the model of Besio et al. (2006) to predict the main geometrical characteristics (crest orientation, wavelength,…) of tidal sand waves is tested by comparing the theoretical predictions with field data. In particular the field observations carried out by Mouchet (1990) and Van Lancker et al. (2005) along the continental shelf of Belgium are used. Additional comparisons are carried out against the field measurements described by Le Bot (2001) and Le Bot and Trenteseaux (2004) which were carried out in an adjacent region. Attention is focused on the prediction of the wavelength of the bottom forms. Indeed, the capability of a linear stability analysis to predict the occurrence of sand waves has been already tested by Hulscher and van den Brink (2001) and more recently by van der Veen et al. (2006). The obtained results show that the theoretical predictions fairly agree with field observations even though some of the comparisons suggest that the accuracy of the predictions depends on the accurate evaluation of the local current and sediment characteristics.

[1]  B. Barkdoll,et al.  Flow and Sediment Transport at River Diversions , 1994 .

[2]  Richard Soulsby,et al.  Prediction of Ripple Properties in Shelf Seas. Mark 2 Predictor for Time Evolution (CD-ROM) , 2005 .

[3]  R. Deigaard,et al.  Mechanics Of Coastal Sediment Transport , 1992 .

[4]  M. Colombini,et al.  Revisiting the linear theory of sand dune formation , 2004, Journal of Fluid Mechanics.

[5]  T. O’Hare,et al.  Investigation of a self-organization model for beach cusp formation and development , 2000 .

[6]  Kelvin J. Richards,et al.  The formation of ripples and dunes on an erodible bed , 1980, Journal of Fluid Mechanics.

[7]  A. H. Stride Offshore Tidal Sands , 1982 .

[8]  Suzanne J.M.H. Hulscher,et al.  Regeneration of sand waves after dredging , 2002 .

[9]  Maurizio Brocchini,et al.  The morphodynamics of tidal sand waves: A model overview , 2008 .

[10]  G. Besio,et al.  On the formation of sand waves and sand banks , 2006, Journal of Fluid Mechanics.

[11]  Déborah Idier,et al.  Analytical and numerical modeling of sandbanks dynamics , 2003 .

[12]  Thierry Garlan,et al.  Influence des tempêtes sur la mobilité des dunes tidales dans le détroit du Pas-de-Calais , 2000 .

[13]  P. Blondeaux Sand ripples under sea waves Part 1. Ripple formation , 1990, Journal of Fluid Mechanics.

[14]  G. Seminara Stability and Morphodynamics , 1998 .

[15]  S. Elgar,et al.  Megaripple migration in a natural surf zone , 1998, Nature.

[16]  S. Deleu,et al.  Management, Research and Budgeting of Aggregates in Shelf Seas related to End-users (Marebasse): Scientific Report Year 1 (01/04/2002 - 31/03/2003) , 2003 .

[17]  S. Hulscher,et al.  Grain size dependency in the occurrence of sand waves , 2006 .

[18]  P. Blondeaux MECHANICS OF COASTAL FORMS , 2003 .

[19]  N. Komarova,et al.  Linear instability mechanisms for sand wave formation , 2000, Journal of Fluid Mechanics.

[20]  A. Trentesaux,et al.  Types of internal structure and external morphology of submarine dunes under the influence of tide- and wind-driven processes (Dover Strait, northern France) , 2004 .

[21]  Vincenza Cinzia Sand Waves in the Messina Strait, Italy , 2002 .

[22]  T. Gerkema A linear stability analysis of tidally generated sand waves , 2000, Journal of Fluid Mechanics.

[23]  Suzanne J.M.H. Hulscher,et al.  Tidal‐induced large‐scale regular bed form patterns in a three‐dimensional shallow water model , 1996 .

[24]  S. Hulscher,et al.  Comparison between predicted and observed sand waves and sand banks in the North Sea , 2001 .

[25]  A. M. Talmon,et al.  Laboratory measurements of the direction of sediment transport on transverse alluvial-bed slopes , 1995 .

[26]  Masato Sekine,et al.  Mechanics of saltating grains. II , 1992 .

[27]  P. Blondeaux,et al.  Crescentic bedforms in the nearshore region , 1999, Journal of Fluid Mechanics.

[28]  G. Besio,et al.  A note on tidally generated sand waves , 2003, Journal of Fluid Mechanics.

[29]  H. Swart,et al.  Modelling the formation of shoreface-connected sand ridges on storm-dominated inner shelves , 2001, Journal of Fluid Mechanics.

[30]  Natalia L. Komarova,et al.  Nonlinear dynamics of sand banks and sand waves , 2000, Journal of Fluid Mechanics.

[31]  A. Mouchet Analysis of tidal elevations and currents along the Belgian coast , 1990 .

[32]  S. Hulscher,et al.  Modelling sand wave migration in shallow shelf seas , 2002 .

[33]  R. L. Soulsby,et al.  Chapter 5 The Bottom Boundary Layer of Shelf Seas , 1983 .

[34]  J. Trowbridge A mechanism for the formation and maintenance of shore-oblique sand ridges on storm-dominated shelves , 1995 .

[35]  Marc Van Meirvenne,et al.  Multivariate geostatistics for the predictive modelling of the surficial sand distribution in shelf seas , 2006 .

[36]  Hong‐Yuan Lee,et al.  Investigation of Saltating Particle Motions , 1994 .

[37]  M. Brocchini,et al.  On the modeling of sand wave migration , 2004 .

[38]  P. Blondeaux,et al.  Flow and sediment transport induced by tide propagation: 2. The wavy bottom case , 2005 .