Temporal steering inequality

Quantum steering is the ability to remotely prepare different quantum states by using entangled pairs as a resource. Very recently, the concept of steering has been quantified with the use of inequalities, leading to substantial applications in quantum information and communication science. Here, we highlight that there exists a natural temporal analogue of the steering inequality when considering measurements on a single object at different times. We give non-trivial operational meaning to violations of this temporal inequality by showing that it is connected to the security bound in the BB84 protocol and thus may have applications in quantum communication.

[1]  V. Scarani,et al.  One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering , 2011, 1109.1435.

[2]  F. Nori,et al.  Efficient tomography of quantum-optical Gaussian processes probed with a few coherent states , 2013, 1304.6307.

[3]  Z. Hradil Quantum-state estimation , 1996, quant-ph/9609012.

[4]  Franco Nori,et al.  Witnessing Quantum Coherence: from solid-state to biological systems , 2012, Scientific Reports.

[5]  Franco Nori,et al.  Distinguishing quantum and classical transport through nanostructures. , 2010, Physical review letters.

[6]  Rupert Ursin,et al.  Violation of local realism with freedom of choice , 2008, Proceedings of the National Academy of Sciences.

[7]  Giacomo Mauro D'Ariano,et al.  Imprinting complete information about a quantum channel on its output state. , 2003, Physical review letters.

[8]  Anders Karlsson,et al.  Security of quantum key distribution using d-level systems. , 2001, Physical review letters.

[9]  R. Spekkens,et al.  Towards a formulation of quantum theory as a causally neutral theory of Bayesian inference , 2011, 1107.5849.

[10]  P. Grangier,et al.  Experimental Tests of Realistic Local Theories via Bell's Theorem , 1981 .

[11]  Franco Nori,et al.  Delocalized single-photon Dicke states and the Leggett-Garg inequality in solid state systems , 2012, Scientific Reports.

[12]  S. Braunstein,et al.  Wringing out better bell inequalities , 1990 .

[13]  S. Walborn,et al.  Revealing hidden Einstein-Podolsky-Rosen nonlocality. , 2011, Physical review letters.

[14]  M. Genovese Research on hidden variable theories: A review of recent progresses , 2005, quant-ph/0701071.

[15]  G. D’Ariano,et al.  Theoretical framework for quantum networks , 2009, 0904.4483.

[16]  S. Braunstein,et al.  Information-theoretic Bell inequalities. , 1988, Physical review letters.

[17]  Hong-Yi Su,et al.  Detecting Einstein-Podolsky-Rosen Steering for Continuous Variable Wavefunctions , 2011, 1111.3198.

[18]  Jing-Ling Chen,et al.  All-Versus-Nothing Proof of Einstein-Podolsky-Rosen Steering , 2012, Scientific Reports.

[19]  D. J. Saunders,et al.  Experimental EPR-steering using Bell-local states , 2009, 0909.0805.

[20]  A. Jamiołkowski Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .

[21]  R. Werner,et al.  Observation of one-way Einstein–Podolsky–Rosen steering , 2012, Nature Photonics.

[22]  Eric G. Cavalcanti,et al.  Einstein-Podolsky-Rosen steering inequalities from entropic uncertainty relations , 2013, 1303.7432.

[23]  H. Weinfurter,et al.  Violation of Bell's Inequality under Strict Einstein Locality Conditions , 1998, quant-ph/9810080.

[24]  Franco Nori,et al.  Unified single-photon and single-electron counting statistics: from cavity-QED to electron transport , 2010, 1008.4430.

[25]  Sae Woo Nam,et al.  Conclusive quantum steering with superconducting transition-edge sensors , 2011, Nature Communications.

[26]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[27]  N. J. Cerf,et al.  Entropic Bell inequalities , 1997 .

[28]  W. Wootters,et al.  Optimal state-determination by mutually unbiased measurements , 1989 .

[29]  James Schneeloch,et al.  Violation of continuous variable EPR steering with discrete measurements , 2012, CLEO: 2013.

[30]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[31]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[32]  Caslav Brukner,et al.  Condition for macroscopic realism beyond the Leggett-Garg inequalities , 2012, 1207.3666.

[33]  A. Winter,et al.  Monogamy of quantum entanglement and other correlations , 2003, quant-ph/0310037.

[34]  F. Nori,et al.  Leggett–Garg inequalities , 2013, 1304.5133.

[35]  Information-theoretic temporal Bell inequality and quantum computation (5 pages) , 2006, quant-ph/0602011.

[36]  D. J. Saunders,et al.  Arbitrarily loss-tolerant Einstein-Podolsky-Rosen steering allowing a demonstration over 1 km of optical fiber with no detection loophole , 2011 .

[37]  H. Bechmann-Pasquinucci,et al.  Incoherent and coherent eavesdropping in the six-state protocol of quantum cryptography , 1998, quant-ph/9807041.

[38]  C. Monroe,et al.  Experimental violation of a Bell's inequality with efficient detection , 2001, Nature.

[39]  N. Gisin,et al.  OPTIMAL EAVESDROPPING IN QUANTUM CRYPTOGRAPHY. I. INFORMATION BOUND AND OPTIMAL STRATEGY , 1997 .

[40]  Č. Brukner,et al.  Quantum correlations with no causal order , 2011, Nature Communications.

[41]  A C Doherty,et al.  Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox. , 2007, Physical review letters.

[42]  Garg,et al.  Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks? , 1985, Physical review letters.

[43]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[44]  R. Renner,et al.  Uncertainty relation for smooth entropies. , 2010, Physical review letters.

[45]  D. Bruß Optimal Eavesdropping in Quantum Cryptography with Six States , 1998, quant-ph/9805019.

[46]  Denis Vion,et al.  Experimental violation of a Bell’s inequality in time with weak measurement , 2010, 1005.3435.

[47]  H. M. Wiseman,et al.  Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox , 2009, 0907.1109.

[48]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.