Parameterized Complexity of Synchronization and Road Coloring

First, we close the multivariate analysis of a canonical problem concerning short reset words (SYN), as it was started by Fernau et al. (2013). Namely, we prove that the problem, parameterized by the number of states, does not admit a polynomial kernel unless the polynomial hierarchy collapses. Second, we consider a related canonical problem concerning synchronizing road colorings (SRCP). Here we give a similar complete multivariate analysis. Namely, we show that the problem, parameterized by the number of states, admits a polynomial kernel and we close the previous research of restrictions to particular values of both the alphabet size and the maximum word length.

[1]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[2]  Sven Sandberg,et al.  Homing and Synchronizing Sequences , 2004, Model-Based Testing of Reactive Systems.

[3]  Avraham Trakhtman,et al.  The Road Coloring and Cerny Conjecture , 2008, Stringology.

[4]  Michael R. Fellows,et al.  On problems without polynomial kernels , 2009, J. Comput. Syst. Sci..

[5]  Henning Fernau,et al.  A multi-parameter analysis of hard problems on deterministic finite automata , 2015, J. Comput. Syst. Sci..

[6]  Adam Roman P-NP Threshold for Synchronizing Road Coloring , 2012, LATA.

[7]  Henning Fernau,et al.  A Multivariate Analysis of Some DFA Problems , 2013, LATA.

[8]  Raphaël M. Jungers,et al.  A Note on a Recent Attempt to Improve the Pin-Frankl Bound , 2014, Discret. Math. Theor. Comput. Sci..

[9]  Adam Roman,et al.  Complexity of Road Coloring with Prescribed Reset Words , 2015, LATA.

[10]  A. N. Trahtman,et al.  The road coloring problem , 2007, 0709.0099.

[11]  Andrzej Kisielewicz,et al.  The Černý conjecture for automata respecting intervals of a directed graph , 2012, Discret. Math. Theor. Comput. Sci..

[12]  A. N. Trahtman,et al.  Modifying the upper bound on the length of minimal synchronizing word , 2011, FCT 2011.

[13]  Michael R. Fellows,et al.  Fundamentals of Parameterized Complexity , 2013 .

[14]  Benjamin Weiss,et al.  Equivalence of topological Markov shifts , 1977 .

[15]  David Eppstein,et al.  Reset Sequences for Monotonic Automata , 1990, SIAM J. Comput..

[16]  Benjamin Steinberg,et al.  The Černý conjecture for one-cluster automata with prime length cycle , 2010, Theor. Comput. Sci..

[17]  Mikhail V. Volkov,et al.  Synchronizing Automata and the Cerny Conjecture , 2008, LATA.

[18]  Paola Bonizzoni,et al.  Regular Splicing Languages Must Have a Constant , 2011, Developments in Language Theory.

[19]  Ján Cerný,et al.  On directable automata , 1971, Kybernetika (Praha).

[20]  J. Pin On two Combinatorial Problems Arising from Automata Theory , 1983 .

[21]  Jüri Vain,et al.  Model-Based Testing of Reactive Systems , 2009 .

[22]  A. Roman,et al.  A complete solution to the complexity of Synchronizing Road Coloring for non-binary alphabets , 2015, Inf. Comput..

[23]  James P. Crutchfield,et al.  Exact Synchronization for Finite-State Sources , 2010, ArXiv.