Diamond overgrown InAlN/GaN HEMT

In this work the technology and characterization of nanocrystalline diamond (NCD) films directly grown on InAlN/GaN HEMTs is presented. Optimization of GaN based HEMT process steps including metallization stacks is discussed. A fully processed InAlN/GaN HEMT structure with 7 nm barrier has been overgrown in a temperature range of 750 °C to 800 °C with a 500 nm thick nanocrystalline diamond film in a Hot Filament CVD system. First results of semi-enhancement mode of DC and RF HEMT operation are reported. The grown NCD films were characterized by SEM, TEM, and Raman spectroscopy. Although no direct thermal conductivity measurements are conducted yet; the performed experiments shows the compatibility of growing high quality NCD films, several microns thick, on InAlN/GaN HEMTs as a potential material for heat extraction purposes.

[1]  I. Gouzman,et al.  Nano-diamond films deposited by direct current glow discharge assisted chemical vapor deposition , 2000 .

[2]  H. Tsai,et al.  Deposition of CVD diamond onto GaN , 2006 .

[3]  M. Umeno,et al.  Structural and optical properties of diamond and nano-diamond films grown by microwave plasma chemical vapor deposition , 2001 .

[4]  Michele Dipalo,et al.  Combining diamond electrodes with GaN heterostructures for harsh environment ISFETs , 2009 .

[5]  B. Pecz,et al.  InAlN/GaN heterostructures for microwave power and beyond , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[6]  David N. Jamieson,et al.  The Raman spectrum of nanocrystalline diamond , 2000 .

[7]  P. Saunier,et al.  AlGaN/GaN HEMTs on Diamond Substrate , 2007, 2007 65th Annual Device Research Conference.

[8]  L. Eastman,et al.  Comparison of GaN HEMTs on Diamond and SiC Substrates , 2007, IEEE Electron Device Letters.

[9]  S. Gsell,et al.  Surface modifications and first stages of heteroepitaxial diamond growth on iridium , 2004 .

[10]  M. Shur,et al.  Self-heating in high-power AlGaN-GaN HFETs , 1998, IEEE Electron Device Letters.

[11]  W. Ebert,et al.  Bias enhanced nucleation of diamond on silicon (100) in a HFCVD system , 2003 .

[12]  Eric Feltin,et al.  Effects of strain and composition on the lattice parameters and applicability of Vegard"s rule in Al-rich Al1-xInxN films grown on sapphire , 2008 .

[13]  S. Delage,et al.  Above 500 °C operation of InAlN/GaN HEMTs , 2009, 2009 Device Research Conference.

[14]  Christophe Gaquiere,et al.  AlGaN/GaN HEMT on (111) single crystalline diamond , 2010 .

[15]  Xin Jiang,et al.  The effect of substrate bias voltage on the nucleation of diamond crystals in a microwave plasma assisted chemical vapor deposition process , 1993 .

[16]  M. Seelmann-Eggebert,et al.  Heat-spreading diamond films for GaN-based high-power transistor devices , 2001 .

[17]  C. Gaquiere,et al.  Characteristics of Al/sub 2/O/sub 3//AllnN /GaN MOSHEMT , 2007 .

[18]  S. Guo,et al.  AlGaN/GaN HEMT on Diamond Technology Demonstration , 2006, 2006 IEEE Compound Semiconductor Integrated Circuit Symposium.

[19]  J. Robertson,et al.  Interpretation of Raman spectra of disordered and amorphous carbon , 2000 .

[20]  M. Hong,et al.  Ultraviolet and visible Raman spectroscopy characterization of chemical vapor deposition diamond films , 2002 .

[21]  E. Kohn,et al.  Barrier-Layer Scaling of InAlN/GaN HEMTs , 2008, IEEE Electron Device Letters.

[22]  U. Mishra,et al.  30-W/mm GaN HEMTs by field plate optimization , 2004, IEEE Electron Device Letters.

[23]  L. Eastman,et al.  Frequency performance enhancement of AlGaN/GaN HEMTs on diamond , 2009 .