On ordinal equivalence of the Shapley and Banzhaf values for cooperative games
暂无分享,去创建一个
[1] Joël Moulen,et al. Ordinal equivalence of power notions in voting games , 2002 .
[2] Josep Freixas,et al. Circumstantial power: Optimal persuadable voters , 2008, Eur. J. Oper. Res..
[3] Philip Wolfe,et al. Contributions to the theory of games , 1953 .
[4] J. R. Isbell,et al. A class of simple games , 1958 .
[5] D. Pallaschke,et al. Game Theory and Related Topics , 1980 .
[6] Guillermo Owen,et al. Characterization of the Banzhaf–Coleman Index , 1978 .
[7] A. Sen,et al. Collective Choice and Social Welfare , 2017 .
[8] Josep Freixas,et al. On ordinal equivalence of power measures given by regular semivalues , 2008, Math. Soc. Sci..
[9] Josep Freixas,et al. Complete simple games , 1996 .
[10] Y. Tomiyama. Simple game, voting representation and ordinal power equivalence , 1987 .
[11] Jane Friedman,et al. Achievable Hierarchies In Voting Games , 2006 .
[12] Pradeep Dubey,et al. Value Theory Without Efficiency , 1981, Math. Oper. Res..
[13] Robert J. Weber,et al. Subjectivity in the Valuation of Games , 1979 .
[14] Robert J. Weber,et al. Probabilistic Values for Games , 1977 .
[15] Josep Freixas,et al. Semivalues as power indices , 2003, Eur. J. Oper. Res..
[16] G. Owen. Multilinear extensions and the banzhaf value , 1975 .
[17] M. Josune Albizuri,et al. On coalitional semivalues , 2004, Games Econ. Behav..
[18] Josep Freixas,et al. Hierarchies achievable in simple games , 2010 .
[19] L. S. Shapley,et al. 17. A Value for n-Person Games , 1953 .