On ordinal equivalence of the Shapley and Banzhaf values for cooperative games

In this paper I consider the ordinal equivalence of the Shapley and Banzhaf values for TU cooperative games, i.e., cooperative games for which the preorderings on the set of players induced by these two values coincide. To this end I consider several solution concepts within semivalues and introduce three subclasses of games which are called, respectively, weakly complete, semicoherent and coherent cooperative games. A characterization theorem in terms of the ordinal equivalence of some semivalues is given for each of these three classes of cooperative games. In particular, the Shapley and Banzhaf values as well as the segment of semivalues they limit are ordinally equivalent for weakly complete, semicoherent and coherent cooperative games.

[1]  Joël Moulen,et al.  Ordinal equivalence of power notions in voting games , 2002 .

[2]  Josep Freixas,et al.  Circumstantial power: Optimal persuadable voters , 2008, Eur. J. Oper. Res..

[3]  Philip Wolfe,et al.  Contributions to the theory of games , 1953 .

[4]  J. R. Isbell,et al.  A class of simple games , 1958 .

[5]  D. Pallaschke,et al.  Game Theory and Related Topics , 1980 .

[6]  Guillermo Owen,et al.  Characterization of the Banzhaf–Coleman Index , 1978 .

[7]  A. Sen,et al.  Collective Choice and Social Welfare , 2017 .

[8]  Josep Freixas,et al.  On ordinal equivalence of power measures given by regular semivalues , 2008, Math. Soc. Sci..

[9]  Josep Freixas,et al.  Complete simple games , 1996 .

[10]  Y. Tomiyama Simple game, voting representation and ordinal power equivalence , 1987 .

[11]  Jane Friedman,et al.  Achievable Hierarchies In Voting Games , 2006 .

[12]  Pradeep Dubey,et al.  Value Theory Without Efficiency , 1981, Math. Oper. Res..

[13]  Robert J. Weber,et al.  Subjectivity in the Valuation of Games , 1979 .

[14]  Robert J. Weber,et al.  Probabilistic Values for Games , 1977 .

[15]  Josep Freixas,et al.  Semivalues as power indices , 2003, Eur. J. Oper. Res..

[16]  G. Owen Multilinear extensions and the banzhaf value , 1975 .

[17]  M. Josune Albizuri,et al.  On coalitional semivalues , 2004, Games Econ. Behav..

[18]  Josep Freixas,et al.  Hierarchies achievable in simple games , 2010 .

[19]  L. S. Shapley,et al.  17. A Value for n-Person Games , 1953 .