A geometric blind source separation method based on facet component analysis
暂无分享,去创建一个
[1] 俊一 甘利,et al. A. Hyvärinen, J. Karhunen and E. Oja, Independent Component Analysis, Jhon Wiley & Sons, 2001年,504ページ. (根本幾・川勝真喜訳:独立成分分析——信号解析の新しい世界,東京電機大学出版局,2005年,532ページ.) , 2010 .
[2] S. Osher,et al. Template matching via $l_1$ minimization and its application to hyperspectral data , 2011 .
[3] Mohamed-Jalal Fadili,et al. Sparsity and Morphological Diversity in Blind Source Separation , 2007, IEEE Transactions on Image Processing.
[4] A. Hero,et al. A Fast Spectral Method for Active 3D Shape Reconstruction , 2004 .
[5] Pierre Comon,et al. Independent component analysis, A new concept? , 1994, Signal Process..
[6] Mario Winter,et al. N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data , 1999, Optics & Photonics.
[7] Chein-I Chang,et al. Hyperspectral Data Exploitation , 2007 .
[8] Wady Naanaa,et al. A geometric approach to blind separation of nonnegative and dependent source signals , 2010, 2010 18th European Signal Processing Conference.
[9] L. Rudin,et al. Nonlinear total variation based noise removal algorithms , 1992 .
[10] Patrik O. Hoyer,et al. Non-negative Matrix Factorization with Sparseness Constraints , 2004, J. Mach. Learn. Res..
[11] Michael Zibulevsky,et al. Underdetermined blind source separation using sparse representations , 2001, Signal Process..
[12] James Curry,et al. Non-negative matrix factorization: Ill-posedness and a geometric algorithm , 2009, Pattern Recognit..
[13] M. J. McDonnell. Box-filtering techniques , 1981 .
[14] Soo-Young Lee. Blind Source Separation and Independent Component Analysis: A Review , 2005 .
[15] Jack Xin,et al. A Soft-Constrained Dynamic Iterative Method of Blind Source Separation , 2009, Multiscale Model. Simul..
[16] G. Bodenhausen,et al. Principles of nuclear magnetic resonance in one and two dimensions , 1987 .
[17] Jack Xin,et al. Underdetermined Sparse Blind Source Separation of Nonnegative and Partially Overlapped Data , 2011, SIAM J. Sci. Comput..
[18] H. Raiffa,et al. 3. The Double Description Method , 1953 .
[19] E. Oja,et al. Independent Component Analysis , 2013 .
[20] Andrzej Cichocki,et al. Adaptive Blind Signal and Image Processing - Learning Algorithms and Applications , 2002 .
[21] J. Boardman. Automating spectral unmixing of AVIRIS data using convex geometry concepts , 1993 .
[22] H. Sebastian Seung,et al. Learning the parts of objects by non-negative matrix factorization , 1999, Nature.
[23] Jack Xin,et al. Nonnegative Sparse Blind Source Separation for NMR Spectroscopy by Data Clustering, Model Reduction, and 1 Minimization , 2012, SIAM J. Imaging Sci..
[24] Wady Naanaa,et al. Blind source separation of positive and partially correlated data , 2005, Signal Process..
[25] A. J. Shaka,et al. Postprocessing and sparse blind source separation of positive and partially overlapped data , 2011, Signal Process..
[26] Jack Xin,et al. A dynamic algorithm for blind separation of convolutive sound mixtures , 2007, Neurocomputing.
[27] J. Dulá,et al. A new procedure for identifying the frame of the convex hull of a finite collection of points in multidimensional space , 1996 .
[28] José M. Bioucas-Dias,et al. Vertex component analysis: a fast algorithm to unmix hyperspectral data , 2005, IEEE Transactions on Geoscience and Remote Sensing.
[29] Michael Brückner,et al. Double Description Method , 2013 .
[30] Seungjin Choi. Blind Source Separation and Independent Component Analysis : A Review , 2004 .
[31] M. Nikolova. An Algorithm for Total Variation Minimization and Applications , 2004 .
[32] J. Xin,et al. A time domain algorithm for blind separation of convolutive sound mixtures and L1 constrainted minimization of cross correlations , 2009 .
[33] Jack Xin,et al. A Recursive Sparse Blind Source Separation Method and Its Application to Correlated Data in NMR Spectroscopy of Biofluids , 2012, J. Sci. Comput..
[34] Chein-I. Chang. Hyperspectral Data Exploitation: Theory and Applications , 2007 .