A geometric blind source separation method based on facet component analysis

Given a set of mixtures, blind source separation attempts to retrieve the source signals without or with very little information of the mixing process. We present a geometric approach for blind separation of nonnegative linear mixtures termed facet component analysis. The approach is based on facet identification of the underlying cone structure of the data. Earlier works focus on recovering the cone by locating its vertices (vertex component analysis) based on a mutual sparsity condition which requires each source signal to possess a stand-alone peak in its spectrum. We formulate alternative conditions so that enough data points fall on the facets of a cone instead of accumulating around the vertices. To find a regime of unique solvability, we make use of both geometric and density properties of the data points and develop an efficient facet identification method by combining data classification and linear regression. For noisy data, total variation technique may be employed. We show computational results on nuclear magnetic resonance spectroscopic data to substantiate our method.

[1]  俊一 甘利,et al.  A. Hyvärinen, J. Karhunen and E. Oja, Independent Component Analysis, Jhon Wiley & Sons, 2001年,504ページ. (根本幾・川勝真喜訳:独立成分分析——信号解析の新しい世界,東京電機大学出版局,2005年,532ページ.) , 2010 .

[2]  S. Osher,et al.  Template matching via $l_1$ minimization and its application to hyperspectral data , 2011 .

[3]  Mohamed-Jalal Fadili,et al.  Sparsity and Morphological Diversity in Blind Source Separation , 2007, IEEE Transactions on Image Processing.

[4]  A. Hero,et al.  A Fast Spectral Method for Active 3D Shape Reconstruction , 2004 .

[5]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[6]  Mario Winter,et al.  N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data , 1999, Optics & Photonics.

[7]  Chein-I Chang,et al.  Hyperspectral Data Exploitation , 2007 .

[8]  Wady Naanaa,et al.  A geometric approach to blind separation of nonnegative and dependent source signals , 2010, 2010 18th European Signal Processing Conference.

[9]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[10]  Patrik O. Hoyer,et al.  Non-negative Matrix Factorization with Sparseness Constraints , 2004, J. Mach. Learn. Res..

[11]  Michael Zibulevsky,et al.  Underdetermined blind source separation using sparse representations , 2001, Signal Process..

[12]  James Curry,et al.  Non-negative matrix factorization: Ill-posedness and a geometric algorithm , 2009, Pattern Recognit..

[13]  M. J. McDonnell Box-filtering techniques , 1981 .

[14]  Soo-Young Lee Blind Source Separation and Independent Component Analysis: A Review , 2005 .

[15]  Jack Xin,et al.  A Soft-Constrained Dynamic Iterative Method of Blind Source Separation , 2009, Multiscale Model. Simul..

[16]  G. Bodenhausen,et al.  Principles of nuclear magnetic resonance in one and two dimensions , 1987 .

[17]  Jack Xin,et al.  Underdetermined Sparse Blind Source Separation of Nonnegative and Partially Overlapped Data , 2011, SIAM J. Sci. Comput..

[18]  H. Raiffa,et al.  3. The Double Description Method , 1953 .

[19]  E. Oja,et al.  Independent Component Analysis , 2013 .

[20]  Andrzej Cichocki,et al.  Adaptive Blind Signal and Image Processing - Learning Algorithms and Applications , 2002 .

[21]  J. Boardman Automating spectral unmixing of AVIRIS data using convex geometry concepts , 1993 .

[22]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[23]  Jack Xin,et al.  Nonnegative Sparse Blind Source Separation for NMR Spectroscopy by Data Clustering, Model Reduction, and 1 Minimization , 2012, SIAM J. Imaging Sci..

[24]  Wady Naanaa,et al.  Blind source separation of positive and partially correlated data , 2005, Signal Process..

[25]  A. J. Shaka,et al.  Postprocessing and sparse blind source separation of positive and partially overlapped data , 2011, Signal Process..

[26]  Jack Xin,et al.  A dynamic algorithm for blind separation of convolutive sound mixtures , 2007, Neurocomputing.

[27]  J. Dulá,et al.  A new procedure for identifying the frame of the convex hull of a finite collection of points in multidimensional space , 1996 .

[28]  José M. Bioucas-Dias,et al.  Vertex component analysis: a fast algorithm to unmix hyperspectral data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[29]  Michael Brückner,et al.  Double Description Method , 2013 .

[30]  Seungjin Choi Blind Source Separation and Independent Component Analysis : A Review , 2004 .

[31]  M. Nikolova An Algorithm for Total Variation Minimization and Applications , 2004 .

[32]  J. Xin,et al.  A time domain algorithm for blind separation of convolutive sound mixtures and L1 constrainted minimization of cross correlations , 2009 .

[33]  Jack Xin,et al.  A Recursive Sparse Blind Source Separation Method and Its Application to Correlated Data in NMR Spectroscopy of Biofluids , 2012, J. Sci. Comput..

[34]  Chein-I. Chang Hyperspectral Data Exploitation: Theory and Applications , 2007 .