Current‐Induced Skyrmion Generation through Morphological Thermal Transitions in Chiral Ferromagnetic Heterostructures

Magnetic skyrmions promise breakthroughs in future memory and computing devices due to their inherent stability and small size. Their creation and current driven motion have been recently observed at room temperature, but the key mechanisms of their formation are not yet well-understood. Here it is shown that in heavy metal/ferromagnet heterostructures, pulsed currents can drive morphological transitions between labyrinth-like, stripe-like, and skyrmionic states. Using high-resolution X-ray microscopy, the spin texture evolution with temperature and magnetic field is imaged and it is demonstrated that with transient Joule heating, topological charges can be injected into the system, driving it across the stripe-skyrmion boundary. The observations are explained through atomistic spin dynamic and micromagnetic simulations that reveal a crossover to a global skyrmionic ground state above a threshold magnetic field, which is found to decrease with increasing temperature. It is demonstrated how by tuning the phase stability, one can reliably generate skyrmions by short current pulses and stabilize them at zero field, providing new means to create and manipulate spin textures in engineered chiral ferromagnets.

[1]  Hans Fangohr,et al.  Joule heating in nanowires , 2010, 1012.4304.

[2]  J. Sinova,et al.  Current-driven periodic domain wall creation in ferromagnetic nanowires , 2016, 1607.03336.

[3]  Benjamin Krueger,et al.  Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. , 2015, Nature materials.

[4]  Michael D. Schneider,et al.  Dynamics and inertia of skyrmionic spin structures , 2015, Nature Physics.

[5]  A. Locatelli,et al.  Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. , 2016, Nature nanotechnology.

[6]  P. Fischer,et al.  Tailoring magnetic energies to form dipole skyrmions and skyrmion lattices , 2016, 1608.01368.

[7]  L. Fritz,et al.  Skyrmion lattice phase in three-dimensional chiral magnets from Monte Carlo simulations , 2013, 1304.6580.

[8]  S. Heinze,et al.  Enhanced skyrmion stability due to exchange frustration , 2017, Scientific Reports.

[9]  F. Buttner,et al.  Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy , 2016, Nature Physics.

[10]  J. Sinova,et al.  Spin Hall effects , 2015 .

[11]  G. Finocchio,et al.  A strategy for the design of skyrmion racetrack memories , 2014, Scientific Reports.

[12]  R. Wiesendanger,et al.  Writing and Deleting Single Magnetic Skyrmions , 2013, Science.

[13]  V. Zablotskii,et al.  Phase transition in magnetic bubble lattices , 1989 .

[14]  A. Fert,et al.  Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. , 2013, Nature nanotechnology.

[15]  George Bourianoff,et al.  Potential implementation of reservoir computing models based on magnetic skyrmions , 2017, 1709.08911.

[16]  C B Muratov Theory of domain patterns in systems with long-range interactions of Coulomb type. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Sebastian Doniach,et al.  Phase transitions with spontaneous modulation-the dipolar Ising ferromagnet , 1982 .

[18]  J. Miltat,et al.  Path to collapse for an isolated Néel skyrmion , 2016, 1601.02875.

[19]  S. Heinze,et al.  Tailoring magnetic skyrmions in ultra-thin transition metal films , 2014, Nature Communications.

[20]  J. Sinova,et al.  Stabilizing spin spirals and isolated skyrmions at low magnetic field exploiting vanishing magnetic anisotropy , 2018, Nature Communications.

[21]  Yan Zhou,et al.  Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions , 2014, Scientific Reports.

[22]  Y. Tokura,et al.  Real-space observation of a two-dimensional skyrmion crystal , 2010, Nature.

[23]  S. Heinze,et al.  Trochoidal motion and pair generation in skyrmion and antiskyrmion dynamics under spin–orbit torques , 2018, Nature Electronics.

[24]  G. Beach,et al.  Current-driven dynamics of chiral ferromagnetic domain walls. , 2013, Nature materials.

[25]  N. Nagaosa,et al.  Theory of antiskyrmions in magnets , 2016, Nature Communications.

[26]  W. Pickett,et al.  Implications of the B20 crystal structure for the magnetoelectronic structure of MnSi , 2004, cond-mat/0403442.

[27]  A. Fert,et al.  Room-Temperature Current-Induced Generation and Motion of sub-100 nm Skyrmions. , 2017, Nano letters.

[28]  Kang L. Wang,et al.  Direct observation of the skyrmion Hall effect , 2016, Nature Physics.

[29]  G. Beach,et al.  Accurate model of the stripe domain phase of perpendicularly magnetized multilayers , 2017 .

[30]  T. Moriya Anisotropic Superexchange Interaction and Weak Ferromagnetism , 1960 .

[31]  P. Böni,et al.  Skyrmion Lattice in a Chiral Magnet , 2009, Science.

[32]  M. Seul,et al.  Domain Shapes and Patterns: The Phenomenology of Modulated Phases , 1995, Science.

[33]  Kang L. Wang,et al.  Blowing magnetic skyrmion bubbles , 2015, Science.

[34]  R. Wiesendanger,et al.  Field-dependent size and shape of single magnetic Skyrmions. , 2015, Physical review letters.

[35]  S. Eisebitt,et al.  Field-free deterministic ultrafast creation of magnetic skyrmions by spin-orbit torques. , 2017, Nature nanotechnology.

[36]  A. Fert,et al.  Skyrmions on the track. , 2013, Nature nanotechnology.

[37]  O. Heinonen,et al.  Generation of magnetic skyrmion bubbles by inhomogeneous spin Hall currents , 2015, 1511.04630.

[38]  I. Dzyaloshinsky A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics , 1958 .

[39]  J. Sinova,et al.  Skyrmion production on demand by homogeneous DC currents , 2016, 1610.08313.

[40]  Wolfe,et al.  Evolution of disorder in magnetic stripe domains. I. Transverse instabilities and disclination unbinding in lamellar patterns. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[41]  J. A. Cape,et al.  Magnetic Domain Structures in Thin Uniaxial Plates with Perpendicular Easy Axis , 1971 .

[42]  A. Rosch,et al.  Capturing of a magnetic skyrmion with a hole , 2014, 1411.2857.