A comparative study of layered transition metal oxide cathodes for application in sodium-ion battery.

Herein, we report a study on P-type layered sodium transition metal-based oxides with a general formula of NaxMO2 (M = Ni, Fe, Mn). We synthesize the materials via coprecipitation followed by annealing in air and rinsing with water, and we examine the electrodes as cathodes for sodium-ion batteries using a propylene carbonate-based electrolyte. We fully investigate the effect of the Ni-to-Fe ratio, annealing temperature, and sodium content on the electrochemical performances of the electrodes. The impact of these parameters on the structural and electrochemical properties of the materials is revealed by X-ray diffraction, scanning electron microscopy, and cyclic voltammetry, respectively. The suitability of this class of P-type materials for sodium battery application is finally demonstrated by cycling tests revealing an excellent electrochemical performance in terms of delivered capacity (i.e., about 200 mAh g(-1)) and charge-discharge efficiency (approaching 100%).

[1]  M. Winter,et al.  Toward Na-ion Batteries—Synthesis and Characterization of a Novel High Capacity Na Ion Intercalation Material , 2013 .

[2]  T. Jacobsen,et al.  Solid-state sodium cells — An alternative to lithium cells? , 1989 .

[3]  Martin Winter,et al.  Toward Na-ion Batteries—Synthesis and Characterization of a Novel High Capacity Na Ion Intercalation Material , 2013 .

[4]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[5]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[6]  B. Scrosati,et al.  High Performance Na0.5[Ni0.23Fe0.13Mn0.63]O2 Cathode for Sodium‐Ion Batteries , 2014 .

[7]  Yang‐Kook Sun,et al.  Lithium-ion batteries. A look into the future , 2011 .

[8]  M. Obrovac,et al.  Structure and Electrochemistry of NaxFexMn1-xO2 (1.0 ≤ x ≤ 0.5) for Na-Ion Battery Positive Electrodes , 2013 .

[9]  S. Passerini,et al.  Unexpected performance of layered sodium-ion cathode material in ionic liquid-based electrolyte , 2014 .

[10]  H. Ahn,et al.  Single crystalline Na(0.7)MnO2 nanoplates as cathode materials for sodium-ion batteries with enhanced performance. , 2013, Chemistry.

[11]  D. Bresser,et al.  Unfolding the Mechanism of Sodium Insertion in Anatase TiO2 Nanoparticles , 2015 .

[12]  G. Ceder,et al.  Electrochemical Properties of Monoclinic NaNiO2 , 2011 .

[13]  J. Dahn,et al.  Superlattice Ordering of Mn, Ni, and Co in Layered Alkali Transition Metal Oxides with P2, P3, and O3 Structures , 2000 .

[14]  Jean-Marie Tarascon,et al.  NaxVO2 as possible electrode for Na-ion batteries , 2011 .

[15]  K. Abraham Intercalation positive electrodes for rechargeable sodium cells , 1982 .

[16]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[17]  A. Goñi,et al.  High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte , 2013 .

[18]  Luis Sánchez,et al.  Synthesis and characterization of high-temperature hexagonal P2-Na0.6 MnO2 and its electrochemical behaviour as cathode in sodium cells , 2002 .

[19]  J. Dahn,et al.  Intercalation of Water in P2, T2 and O2 Structure Az[CoxNi1/3-xMn2/3]O2 , 2001 .

[20]  W. L. Worrell,et al.  A thermodynamic study of sodium-intercalated TaS2 and TiS2 , 1979 .

[21]  H. Ahn,et al.  β-MnO 2 nanorods with exposed tunnel structures as high-performance cathode materials for sodium-ion batteries , 2013 .

[22]  S. Passerini,et al.  Water sensitivity of layered P2/P3-NaxNi0.22Co0.11Mn0.66O2 cathode material , 2014 .

[23]  M. Winter,et al.  P2-type layered Na0.45Ni0.22Co0.11Mn0.66O2 as intercalation host material for lithium and sodium batteries , 2013 .

[24]  S. Passerini,et al.  Electrochemical and morphological characterization of layered sodium-ion cathode material in ionic liquid-based electrolyte , 2014 .

[25]  P. Hagenmuller,et al.  Structural classification and properties of the layered oxides , 1980 .

[26]  Guoxiu Wang,et al.  Single-crystalline bilayered V2O5 nanobelts for high-capacity sodium-ion batteries. , 2013, ACS nano.

[27]  Hiroaki Yoshida,et al.  Crystal Structures and Electrode Performance of Alpha-NaFeO2 for Rechargeable Sodium Batteries , 2012 .

[28]  P. Hagenmuller,et al.  Electrochemical intercalation of sodium in NaxCoO2 bronzes , 1981 .

[29]  Shinichi Komaba,et al.  Study on the reversible electrode reaction of Na(1-x)Ni(0.5)Mn(0.5)O2 for a rechargeable sodium-ion battery. , 2012, Inorganic chemistry.

[30]  P. Hagenmuller,et al.  Evolution structurale et proprietes physiques des phases AXMO2 (A = Na, K; M = Cr, Mn, Co) (x ⩽ 1) , 1975 .

[31]  Jean-Marie Tarascon,et al.  Is lithium the new gold? , 2010, Nature chemistry.

[32]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[33]  Mark N. Obrovac,et al.  Structure and Electrochemistry of NaxFexMn1-xO2 (1.0 , 2013 .

[34]  Dong Ju Lee,et al.  Alternative materials for sodium ion–sulphur batteries , 2013 .

[35]  Shinichi Komaba,et al.  Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2 , 2010 .

[36]  Jean-Marie Tarascon,et al.  Synthesis, Structure, and Electrochemical Properties of the Layered Sodium Insertion Cathode Material: NaNi1/3Mn1/3Co1/3O2 , 2012 .

[37]  Xiqian Yu,et al.  Electrochemical properties of P2-phase Na0.74CoO2 compounds as cathode material for rechargeable sodium-ion batteries , 2013 .

[38]  Jiangfeng Qian,et al.  P2-type Na0.67Mn0.65Fe0.2Ni0.15O2 Cathode Material with High-capacity for Sodium-ion Battery , 2014 .

[39]  S. Passerini,et al.  Mn 0 . 66 O 2 Cathode Material , 2014 .

[40]  K. Kubota,et al.  Layered oxides as positive electrode materials for Na-ion batteries , 2014 .

[41]  J. Tarascon,et al.  Synthesis , Structure , and Electrochemical Properties of the Layered Sodium Insertion Cathode Material : NaNi 1 / 3 Mn 1 / 3 Co 1 / 3 O 2 , 2012 .