A Technique for Accelerating the Convergence of Restarted GMRES

We have observed that the residual vectors at the end of each restart cycle of restarted GMRES often alternate direction in a cyclic fashion, thereby slowing convergence. We present a new technique for accelerating the convergence of restarted GMRES by disrupting this alternating pattern. The new algorithm resembles a full conjugate gradient method with polynomial preconditioning, and its implementation requires minimal changes to the standard restarted GMRES algorithm.

[1]  Lloyd N. Trefethen,et al.  A Hybrid GMRES Algorithm for Nonsymmetric Linear Systems , 1992, SIAM J. Matrix Anal. Appl..

[2]  T. Manteuffel,et al.  A taxonomy for conjugate gradient methods , 1990 .

[3]  Valeria Simoncini,et al.  On the Convergence of Restarted Krylov Subspace Methods , 2000, SIAM J. Matrix Anal. Appl..

[4]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[5]  Y. Saad Analysis of Augmented Krylov Subspace Methods , 1997, SIAM J. Matrix Anal. Appl..

[6]  Kang C. Jea,et al.  Generalized conjugate-gradient acceleration of nonsymmetrizable iterative methods , 1980 .

[7]  M. Eiermann,et al.  Geometric aspects of the theory of Krylov subspace methods , 2001, Acta Numerica.

[8]  Wayne Joubert,et al.  On the convergence behavior of the restarted GMRES algorithm for solving nonsymmetric linear systems , 1994, Numer. Linear Algebra Appl..

[9]  E. Sturler,et al.  Truncation Strategies for Optimal Krylov Subspace Methods , 1999 .

[10]  Ronald B. Morgan,et al.  GMRES with Deflated Restarting , 2002, SIAM J. Sci. Comput..

[11]  Oliver G. Ernst,et al.  Analysis of acceleration strategies for restarted minimal residual methods , 2000 .

[12]  Ronald B. Morgan,et al.  Implicitly Restarted GMRES and Arnoldi Methods for Nonsymmetric Systems of Equations , 2000, SIAM J. Matrix Anal. Appl..

[13]  Lloyd N. Trefethen,et al.  How Fast are Nonsymmetric Matrix Iterations? , 1992, SIAM J. Matrix Anal. Appl..

[14]  Elizabeth R. Jessup,et al.  Toward Memory-Efficient Linear Solvers , 2002, VECPAR.

[15]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[16]  Mark Embree,et al.  The Tortoise and the Hare Restart GMRES , 2003, SIAM Rev..

[17]  Cornelis Vuik,et al.  GMRESR: a family of nested GMRES methods , 1994, Numer. Linear Algebra Appl..

[18]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[19]  H. V. D. Vorst,et al.  The superlinear convergence behaviour of GMRES , 1993 .

[20]  Y. Saad,et al.  Deflated and Augmented Krylov Subspace Techniques , 1997 .

[21]  Gerard L. G. Sleijpen,et al.  Accelerated Inexact Newton Schemes for Large Systems of Nonlinear Equations , 1998, SIAM J. Sci. Comput..

[22]  Ronald B. Morgan,et al.  A Restarted GMRES Method Augmented with Eigenvectors , 1995, SIAM J. Matrix Anal. Appl..

[23]  E. Sturler,et al.  Nested Krylov methods based on GCR , 1996 .

[24]  S. Eisenstat,et al.  Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .