An investigation into the merger of stochastic diffusion search and particle swarm optimisation

This study reports early research aimed at applying the powerful resource allocation mechanism deployed in Stochastic Diffusion Search (SDS) [4] to the Particle Swarm Optimiser (PSO) metaheuristic [22], effectively merging the two swarm intelligence algorithms. The results reported herein suggest that the hybrid algorithm, exploiting information sharing between particles, has the potential to improve the optimisation capability of conventional PSOs.

[1]  L. Darrell Whitley,et al.  Evaluating Evolutionary Algorithms , 1996, Artif. Intell..

[2]  C. D. Perttunen,et al.  Lipschitzian optimization without the Lipschitz constant , 1993 .

[3]  Yanchun Liang,et al.  Hybrid evolutionary algorithms based on PSO and GA , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[4]  Yaochu Jin,et al.  A comprehensive survey of fitness approximation in evolutionary computation , 2005, Soft Comput..

[5]  Andy J. Keane,et al.  Evolutionary optimization for computationally expensive problems using Gaussian processes , 2001 .

[6]  Kris De Meyer Explorations in Stochastic Diusion Search: soft- and hardware implementations of biologically inspired Spiking Neuron Stochastic Diusion Networks , 2000 .

[7]  Jürgen Branke,et al.  Efficient fitness estimation in noisy environments , 2001 .

[8]  Roger M. Whitaker,et al.  An agent based approach to site selection for wireless networks , 2002, SAC '02.

[9]  C. Janson Experimental evidence for spatial memory in foraging wild capuchin monkeys, Cebus apella , 1998, Animal Behaviour.

[10]  Mohammad Majid al-Rifaie,et al.  Creative or Not? Birds and Ants Draw with Muscles , 2011 .

[11]  Shoichi Hasegawa,et al.  Development and investigation of efficient GA/PSO-HYBRID algorithm applicable to real-world design optimization , 2009, IEEE Comput. Intell. Mag..

[12]  Konstantinos G. Margaritis,et al.  An Experimental Study of Benchmarking Functions for Genetic Algorithms , 2002, Int. J. Comput. Math..

[13]  Ulf Grenander,et al.  A stochastic nonlinear model for coordinated bird flocks , 1990 .

[14]  David B. Fogel,et al.  Tuning Evolutionary Programming for Conformationally Flexible Molecular Docking , 1996, Evolutionary Programming.

[15]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1987, SIGGRAPH.

[16]  James Kennedy,et al.  Defining a Standard for Particle Swarm Optimization , 2007, 2007 IEEE Swarm Intelligence Symposium.

[17]  Nancy M. Amato,et al.  Roadmap-based flocking for complex environments , 2002, 10th Pacific Conference on Computer Graphics and Applications, 2002. Proceedings..

[18]  Slawomir J. Nasuto,et al.  Steady State Resource Allocation Analysis of the Stochastic Diffusion Search , 2002, BICA 2015.

[19]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[20]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[21]  Mohammad Majid al-Rifaie,et al.  The mining game: a brief introduction to the Stochastic Diffusion Search metaheuristic , 2010 .

[22]  Slawomir J. Nasuto,et al.  Time Complexity Analysis of the Stochastic Diffusion Search , 1998, NC.

[23]  Slawomir J. Nasuto,et al.  Convergence Analysis of Stochastic Diffusion Search , 1999, Parallel Algorithms Appl..

[24]  Maja J. Mataric,et al.  Interaction and intelligent behavior , 1994 .

[25]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[26]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[27]  John Mark Bishop,et al.  STOCHASTIC DIFFUSION: USING RECRUITMENT FOR SEARCH , 2003 .

[28]  Germano Lambert-Torres,et al.  Hybrid Evolutionary Algorithm Based on PSO and GA Mutation , 2006, 2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06).

[29]  John Mark Bishop,et al.  Minimum stable convergence criteria for Stochastic Diffusion Search , 2004 .

[30]  Andries Petrus Engelbrecht,et al.  Fundamentals of Computational Swarm Intelligence , 2005 .

[31]  J. Bishop Stochastic searching networks , 1989 .

[32]  K. Premalatha,et al.  Hybrid PSO and GA for Global Maximization , 2009 .

[33]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[34]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[35]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.