The Borel Conjecture for hyperbolic and CAT(0)-groups

We prove the Borel Conjecture for a class of groups containing word-hyperbolic groups and groups acting properly, isometrically and cocompactly on a finite dimensional CAT(0)-space.

[1]  Christian Wegner The "K"-theoretic Farrell-Jones conjecture for CAT(0)-groups , 2010, 1012.3349.

[2]  W. Lueck,et al.  On the Farrell–Jones Conjecture and its applications , 2007, math/0703548.

[3]  A. Ranicki Exact sequences in the algebraic theory of surgery , 1981 .

[4]  Topology of homology manifolds , 1996 .

[5]  T. Januszkiewicz,et al.  Hyperbolization of polyhedra , 1991 .

[6]  The algebraic theory of finiteness obstruction. , 1985 .

[7]  A. O. Houcine On hyperbolic groups , 2006 .

[8]  W. Lueck,et al.  Topological rigidity for non-aspherical manifolds , 2005, math/0509238.

[9]  F. Farrell,et al.  Topological rigidity for compact non-positively curved manifolds , 1990 .

[10]  Vincent Guirardel,et al.  Limit groups as limits of free groups , 2005 .

[11]  F. Farrell,et al.  Isomorphism conjectures in algebraic $K$-theory , 1993 .

[12]  Mladen Bestvina,et al.  The boundary of negatively curved groups , 1991 .

[13]  Equivariant covers for hyperbolic groups , 2006, math/0609685.

[14]  Ruth Charney STRICT HYPERBOLIZATION , 2003 .

[15]  The torsion of a self equivalence , 1967 .

[16]  Gabor Moussong,et al.  Hyperbolic Coxeter groups , 1988 .

[17]  E. Pedersen,et al.  Identifying assembly maps in K- and L-theory , 2004 .

[18]  A. Ranicki Lower K- and L-theory , 1992 .

[19]  F. Paulin Sur la théorie élémentaire des groupes libres , 2003 .

[20]  Andrew Ranicki,et al.  Algebraic L-theory and Topological Manifolds , 1993 .

[21]  Bijin Hu Whitehead groups of finite polyhedra with nonpositive curvature , 1993 .

[22]  Mark V. Sapir,et al.  Some Group Theory Problems , 2007, Int. J. Algebra Comput..

[23]  F. Farrell,et al.  Rigidity for aspherical manifolds with $\pi_1 \subset GL_m (\mathbb{R})$ , 1998 .

[24]  Flows and joins of metric spaces , 2005, math/0503274.

[25]  D. Quillen,et al.  Higher algebraic K-theory: I , 1973 .

[26]  G. Carlsson,et al.  Controlled algebra and the novikov conjectures for K- and L-theory , 1995 .

[27]  James F. Davis,et al.  Algebraic K‐theory over the infinite dihedral group: a controlled topology approach , 2010, 1002.3702.

[28]  S. Weinberger,et al.  On hyperbolic groups with spheres as boundary , 2009, 0911.3725.

[29]  G. ARZHANTSEVA EXAMPLES OF RANDOM GROUPS , 2008 .

[30]  Michael Davis,et al.  The geometry and topology of Coxeter groups , 2008 .

[31]  E. K. Pedersen,et al.  On the Karoubi Filtration of a Category , 1997 .

[32]  Michael W. Davis Groups Generated by reflections and aspherical manifolds not covered by Euclidean space , 1983 .

[33]  A. Bartels Squeezing and Higher Algebraic K-Theory , 2003 .

[34]  C. Weibel,et al.  A nonconnective delooping of algebraic K-theory , 1985 .

[35]  W. Lueck,et al.  The Baum-Connes and the Farrell-Jones Conjectures in K- and L-Theory , 2004, math/0402405.

[36]  K– and L–theory of the semi-direct product of the discrete 3–dimensional Heisenberg group by ℤ∕4 , 2004, math/0412156.

[37]  F. Farrell,et al.  A topological analogue of Mostow’s rigidity theorem , 1989 .

[38]  F. Mathematik K- and L-theory of the semi-direct product of the discrete 3-dimensional Heisenberg group by Z/4 , 2005 .

[39]  S. Cappell Unitary nilpotent groups and Hermitian $K$-theory. I , 1974 .

[40]  W. Lück Transformation groups and algebraic K-theory , 1989 .

[41]  A. Kuku,et al.  Higher Algebraic K-Theory , 2006 .

[42]  M. Bridson,et al.  Metric Spaces of Non-Positive Curvature , 1999 .

[43]  V. Lafforgue,et al.  Counterexamples to the Baum—Connes conjecture , 2002 .

[44]  W. Lueck,et al.  Geodesic flow for CAT.0/-groups , 2010, 1003.4630.

[45]  I. Madsen,et al.  EquivariantL-theory II , 1990 .

[46]  Igor Mineyev,et al.  The Baum-Connes conjecture for hyperbolic groups , 2001, math/0105086.

[47]  E. Swenson A cut point theorem for $\rm{CAT}(0)$ groups , 1999 .

[48]  L. Ji The integral Novikov conjectures for S-arithmetic groups i , 2007 .

[49]  W. Lück The transfer maps induced in the algebraic K0- and K1-groups by a fibration II , 1987 .

[50]  Z. Sela,et al.  Diophantine geometry over groups I: Makanin-Razborov diagrams , 2001 .

[51]  A. Bartels,et al.  On the Isomorphism Conjecture in algebraic K -theory , 2001, math/0108139.

[52]  The Farrell-Jones isomorphism conjecture for 3-manifold groups , 2004, math/0405211.

[53]  Endre Szabó,et al.  On sofic groups , 2003, math/0305352.

[54]  W. Lück The transfer maps induced in the algebraic $K_0$- and $K_1$-groups by a fibration I. , 1986 .

[55]  W. Lueck,et al.  Inheritance of isomorphism conjectures under colimits , 2007, math/0702460.

[56]  Limit Groups are Cat(0) , 2004, math/0410198.

[57]  A. Ranicki The algebraic theory of torsion I. Foundations , 1985 .

[58]  Lacunary hyperbolic groups , 2007, math/0701365.

[59]  James R. Munkres,et al.  Topology; a first course , 1974 .

[60]  A. Bartels,et al.  The K-theoretic Farrell–Jones conjecture for hyperbolic groups , 2007, math/0701434.

[61]  James F. Davis,et al.  Algebraic K -theory over the infinite dihedral group: an algebraic approach , 2008, 0803.1639.