Enhanced Near‐Bandgap Response in InP Nanopillar Solar Cells

The article of record as published may be found at http://dx.doi.org/10.1002/aenm.201400061

[1]  Zhiyong Fan,et al.  Nanopillar photovoltaics: Materials, processes, and devices , 2012 .

[2]  Nathan S. Lewis,et al.  High-performance Si microwire photovoltaics , 2011 .

[3]  H. Kurz,et al.  Texturisation of multicrystalline silicon solar cells by RIE and plasma etching , 2003 .

[4]  Yu-Lun Chueh,et al.  p-Type InP nanopillar photocathodes for efficient solar-driven hydrogen production. , 2012, Angewandte Chemie.

[5]  Keith Emery,et al.  High efficiency indium tin oxide/indium phosphide solar cells , 1985 .

[6]  Y. X. Wang,et al.  Nuclear Instruments and Methods in Physics Research Section B : Beam Interactions with Materials and Atoms , 2018 .

[7]  Hao-Chih Yuan,et al.  An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. , 2012, Nature nanotechnology.

[8]  Shapira,et al.  Evidence for low intrinsic surface-recombination velocity on p-type InP. , 1991, Physical review. B, Condensed matter.

[9]  F. Dimroth,et al.  InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit , 2013, Science.

[10]  Aspects of the stochastic Burgers equation and their connection with turbulence , 2000, nlin/0005050.

[11]  Joel W. Ager,et al.  A direct thin-film path towards low-cost large-area III-V photovoltaics , 2013, Scientific Reports.

[12]  Wilhelm Warta,et al.  Solar cell efficiency tables (version 42) , 2013 .

[13]  W. Walukiewicz Mechanism of Schottky barrier formation: The role of amphoteric native defects , 1987 .

[14]  D. Clark,et al.  Surface modification of InP by plasma techniques using hydrogen and oxygen , 1981 .

[15]  R. Margolis,et al.  Supply-Chain Dynamics of Tellurium, Indium, and Gallium Within the Context of PV Manufacturing Costs , 2013, IEEE Journal of Photovoltaics.

[16]  Chih-Hsiung Huang,et al.  Realizing high-efficiency omnidirectional n-type Si solar cells via the hierarchical architecture concept with radial junctions. , 2013, ACS nano.

[17]  W. Walukiewicz,et al.  Intrinsic limitations to the doping of wide-gap semiconductors , 2001 .

[18]  A. Fahrenbruch,et al.  Sputtered oxide/indium phosphide junctions and indium phosphide surfaces , 1980 .

[19]  Yangsen Kang,et al.  High-efficiency nanostructured window GaAs solar cells. , 2013, Nano letters.

[20]  Zhiyong Fan,et al.  Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. , 2009, Nature materials.

[21]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[22]  S. Pearton REACTIVE ION ETCHING OF III–V SEMICONDUCTORS , 1994 .

[23]  Stephen J. Pearton,et al.  Ion milling damage in InP and GaAs , 1990 .