Maximum Parsimony for Tree Mixtures
暂无分享,去创建一个
[1] Elchanan Mossel,et al. Mixed-up Trees: the Structure of Phylogenetic Mixtures , 2007, Bulletin of mathematical biology.
[2] M. Bordewich,et al. Computing the Hybridization Number of Two Phylogenetic Trees Is Fixed-Parameter Tractable , 2007, IEEE/ACM Transactions on Computational Biology and Bioinformatics.
[3] Eric Vigoda,et al. Phylogeny of Mixture Models: Robustness of Maximum Likelihood and Non-Identifiable Distributions , 2006, J. Comput. Biol..
[4] Elizabeth S. Allman,et al. The Identifiability of Tree Topology for Phylogenetic Models, Including Covarion and Mixture Models , 2005, J. Comput. Biol..
[5] F. James Rohlf,et al. J. Felsenstein, Inferring Phylogenies, Sinauer Assoc., 2004, pp. xx + 664. , 2005, Journal of Classification.
[6] F. Delsuc,et al. Phylogenomics and the reconstruction of the tree of life , 2005, Nature Reviews Genetics.
[7] K. Chao,et al. Steiner Minimal Trees , 2005 .
[8] Hans-Jürgen Bandelt,et al. Invited Presentation: Median Hulls as Steiner Hulls in Rectilinear and Molecular Sequence Spaces , 2001, WG.
[9] Sandi Klavzar,et al. An Euler-type formula for median graphs , 1998, Discret. Math..
[10] Tao Jiang,et al. On the Complexity of Comparing Evolutionary Trees , 1996, Discret. Appl. Math..
[11] H. Bandelt,et al. Mitochondrial portraits of human populations using median networks. , 1995, Genetics.
[12] J. Hein. Reconstructing evolution of sequences subject to recombination using parsimony. , 1990, Mathematical biosciences.
[13] Roberto Tamassia,et al. On Embedding a Graph in the Grid with the Minimum Number of Bends , 1987, SIAM J. Comput..
[14] W. H. Day. Computationally difficult parsimony problems in phylogenetic systematics , 1983 .
[15] R. Graham,et al. The steiner problem in phylogeny is NP-complete , 1982 .
[16] David S. Johnson,et al. The Rectilinear Steiner Tree Problem is NP Complete , 1977, SIAM Journal of Applied Mathematics.
[17] F. Y. Wu. Number of spanning trees on a lattice , 1977 .
[18] M. Hanan,et al. On Steiner’s Problem with Rectilinear Distance , 1966 .