Surface-enhanced Raman scattering from semiconductor and graphene quantum dots coupled to metallic-film-on-nanosphere substrates

[1]  Yu-Cheng Chang,et al.  A facile method to directly deposit the large-scale Ag nanoparticles on a silicon substrate for sensitive, uniform, reproducible and stable SERS substrate , 2019, Journal of Alloys and Compounds.

[2]  D. Huo,et al.  Flexible bipyramid-AuNPs based SERS tape sensing strategy for detecting methyl parathion on vegetable and fruit surface , 2019, Sensors and Actuators B: Chemical.

[3]  W. Pang,et al.  Hierarchical assembly of gold nanorod stripe patterns for sensing and cells alignment , 2019, Nanotechnology.

[4]  D. Mao,et al.  Surface-enhanced Raman spectroscopy with Au-nanoparticle substrate fabricated by using femtosecond pulse , 2018, Nanotechnology.

[5]  Vijayamohanan K. Pillai,et al.  Spotlighting graphene quantum dots and beyond: Synthesis, properties and sensing applications , 2017 .

[6]  A. R. Dhawan,et al.  Near-infrared emitting CdTeSe alloyed quantum dots: Raman scattering, photoluminescence and single-emitter optical properties , 2017 .

[7]  Yifeng Lei,et al.  Rare-Earth Free Self-Activated Graphene Quantum Dots and Copper-Cysteamine Phosphors for Enhanced White Light-Emitting-Diodes under Single Excitation , 2017, Scientific Reports.

[8]  C. Perlaki,et al.  Sustained and Cost Effective Silver Substrate for Surface Enhanced Raman Spectroscopy Based Biosensing , 2017, Scientific Reports.

[9]  Katrin F. Domke,et al.  The SERS signature of PbS quantum dot oxidation , 2017 .

[10]  S. Lau,et al.  Functionalization of graphene quantum dots by fluorine: Preparation, properties, application, and their mechanisms , 2017 .

[11]  H. Sugimoto,et al.  Photoluminescence Enhancement of Silicon Quantum Dot Monolayer by Double Resonance Plasmonic Substrate , 2017 .

[12]  Hao Zhang,et al.  Employing CdSexTe1–x Alloyed Quantum Dots to Avoid the Temperature-Dependent Emission Shift of Light-Emitting Diodes , 2017 .

[13]  X. Ye,et al.  Ordered array of Ag semishells on different diameter monolayer polystyrene colloidal crystals: An ultrasensitive and reproducible SERS substrate , 2016, Scientific Reports.

[14]  T. Nozaki,et al.  Analysis of temporal evolution of quantum dot surface chemistry by surface-enhanced Raman scattering , 2016, Scientific Reports.

[15]  C. Haynes,et al.  Surface-Enhanced Raman Spectroscopy Detection of Ricin B Chain in Human Blood , 2016 .

[16]  M. S. Jeong,et al.  Corrigendum: High Color-Purity Green, Orange, and Red Light-Emitting Diodes Based on Chemically Functionalized Graphene Quantum Dots , 2016, Scientific Reports.

[17]  E. Sargent,et al.  Colloidal quantum dot ligand engineering for high performance solar cells , 2016 .

[18]  A. Maître,et al.  Plasmonics of opalic surface: a combined near-and far-field approach , 2016, 1604.03721.

[19]  S. Rhee,et al.  High Color-Purity Green, Orange, and Red Light-Emitting Didoes Based on Chemically Functionalized Graphene Quantum Dots , 2016, Scientific Reports.

[20]  Ryan A. Hackler,et al.  Probing the Chemistry of Alumina Atomic Layer Deposition Using Operando Surface-Enhanced Raman Spectroscopy , 2016 .

[21]  Jun‐Jie Zhu,et al.  Highly Enhanced Fluorescence of CdSeTe Quantum Dots Coated with Polyanilines via In-Situ Polymerization and Cell Imaging Application. , 2015, ACS applied materials & interfaces.

[22]  E. Sheremet,et al.  Surface- and tip-enhanced resonant Raman scattering from CdSe nanocrystals. , 2015, Physical chemistry chemical physics : PCCP.

[23]  T. Nozaki,et al.  Chemical analysis of ligand-free silicon nanocrystal surfaces by surface enhanced Raman spectroscopy , 2014, 1412.8622.

[24]  T. Xu,et al.  Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties , 2014, Nature Communications.

[25]  H. Ehrlich,et al.  Deposition of silver nanoparticles on organically-modified silica in the presence of lignosulfonate , 2014 .

[26]  J. Baumberg,et al.  Probing confined phonon modes in individual CdSe nanoplatelets using surface-enhanced Raman scattering. , 2014, Physical review letters.

[27]  Peng Chen,et al.  Revealing the tunable photoluminescence properties of graphene quantum dots , 2014 .

[28]  X. Jing,et al.  Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots , 2014, Scientific Reports.

[29]  W. Su,et al.  Surface-enhanced Raman scattering substrate based on a Ag coated monolayer array of SiO2 spheres for organic dye detection , 2014 .

[30]  Xi Chen,et al.  Luminescent graphene quantum dots as new fluorescent materials for environmental and biological applications , 2014 .

[31]  A. Maître,et al.  Determination of the Surface Plasmon Polariton Extraction Efficiency from a Self-Assembled Plasmonic Crystal , 2013, Plasmonics.

[32]  Tuan Vo-Dinh,et al.  Label-free DNA biosensor based on SERS Molecular Sentinel on Nanowave chip. , 2013, Analytical chemistry.

[33]  Juan Peng,et al.  Focusing on luminescent graphene quantum dots: current status and future perspectives. , 2013, Nanoscale.

[34]  Jun‐Jie Zhu,et al.  Electrochemiluminescence energy transfer-promoted ultrasensitive immunoassay using near-infrared-emitting CdSeTe/CdS/ZnS quantum dots and gold nanorods , 2013, Scientific Reports.

[35]  J. Joo,et al.  Surface enhanced Raman scattering effect of CdSe/ZnS quantum dots hybridized with Au nanowire , 2013 .

[36]  Richard P Van Duyne,et al.  Creating, characterizing, and controlling chemistry with SERS hot spots. , 2013, Physical chemistry chemical physics : PCCP.

[37]  R. Asahi,et al.  Optically Tunable Amino‐Functionalized Graphene Quantum Dots , 2012, Advanced materials.

[38]  Guonan Chen,et al.  Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid , 2012 .

[39]  Stéphanie Buil,et al.  FDTD simulations of localization and enhancements on fractal plasmonics nanostructures. , 2012, Optics express.

[40]  Salvatore Spadaro,et al.  Surface-enhanced Raman scattering of SnO2bulk material and colloidal solutions , 2011, 1112.1813.

[41]  A. Maître,et al.  Isotropic broadband absorption by a macroscopic self-organized plasmonic crystal. , 2011, Optics express.

[42]  M. Vasilevskiy,et al.  Resonant Raman scattering in CdSxSe1−x nanocrystals: effects of phonon confinement, composition, and elastic strain , 2011 .

[43]  H. Chiang,et al.  Size Dependence of Nanoparticle-SERS Enhancement from Silver Film over Nanosphere (AgFON) Substrate , 2011 .

[44]  Xin Yan,et al.  Colloidal Graphene Quantum Dots , 2010 .

[45]  A. Maître,et al.  Controlled modification of single colloidal CdSe/ZnS nanocrystal fluorescence through interactions with a gold surface. , 2010, Optics express.

[46]  J. Baumberg,et al.  Surface-enhanced Raman spectroscopy of CdSe quantum dots on nanostructured plasmonic surfaces , 2009 .

[47]  D. Zahn,et al.  Surface-enhanced Raman scattering by CdS quantum dots , 2009, 2009 International Conference and Seminar on Micro/Nanotechnologies and Electron Devices.

[48]  J. Lyding,et al.  The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. , 2009, Nature materials.

[49]  Dana D. Dlott,et al.  Measurement of the Distribution of Site Enhancements in Surface-Enhanced Raman Scattering , 2008, Science.

[50]  J. Laverdant,et al.  Polarization dependent near-field speckle of random gold films , 2008 .

[51]  L. Novotný,et al.  Optical Measurement of the Phase-Breaking Length in Graphene , 2008, 1008.1563.

[52]  D. Zahn,et al.  Surface enhanced Raman scattering by CdS quantum dots , 2008 .

[53]  M. I. Katsnelson,et al.  Chaotic Dirac Billiard in Graphene Quantum Dots , 2007, Science.

[54]  K. Novoselov,et al.  The Raman Fingerprint of Graphene , 2006, cond-mat/0606284.

[55]  R. Merlin,et al.  Raman and ultrafast optical spectroscopy of acoustic phonons in Cd Te 0.68 Se 0.32 quantum dots , 2006 .

[56]  R. V. Van Duyne,et al.  Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy. , 2005, Journal of the American Chemical Society.

[57]  Xiaogang Peng,et al.  Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals , 2003 .

[58]  Shuming Nie,et al.  Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. , 2003, Journal of the American Chemical Society.

[59]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[60]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[61]  Tuan Vo-Dinh,et al.  Surface-enhanced Raman spectrometry for trace organic analysis , 1984 .

[62]  F. Tuinstra,et al.  Raman Spectrum of Graphite , 1970 .

[63]  L. Novotný,et al.  Low temperature raman study of the electron coherence length near graphene edges. , 2011, Nano letters.

[64]  W. Stöber,et al.  Controlled growth of monodisperse silica spheres in the micron size range , 1968 .