New upper bounds on feedback vertex numbers in butterflies

Butterflies are undirected graphs of bounded degree. They are widely used as interconnection networks. In this paper we study the feedback vertex set problem for butterflies. We show that the feedback vertex set found by Luccio's algorithm [Inform. Process. Lett. 66 (1998) 59-64] for the k-dimensional butterfly Bk is of size ⌊(3k + 1)2k + 1/9⌋. Besides, we propose an algorithm to find a feedback vertex set of size either ⌊(3k + 1)2k + 1/9⌋ - 2k - 1/3 or ⌊(3k + 1)2k + 1/9⌋ - 2k - 2 ⌈k/2⌉ - 2⌊k/2⌋ + 1 / 3 for Bk depending on whether k is even or odd.

[1]  Mary Lou Soffa,et al.  On Locating Minimum Feedback Vertex Sets , 1988, J. Comput. Syst. Sci..

[2]  Francesco Maffioli,et al.  Solving the feedback vertex set problem on undirected graphs , 2000, Discret. Appl. Math..

[3]  Jou-Ming Chang,et al.  Feedback vertex sets in star graphs , 2004, Inf. Process. Lett..

[4]  Panos M. Pardalos,et al.  Feedback Set Problems , 1999, Handbook of Combinatorial Optimization.

[5]  Toshihiro Fujito,et al.  Approximating minimum feedback vertex sets in hypergraphs , 2000, Theor. Comput. Sci..

[6]  Maw-Shang Chang,et al.  Minimum feedback vertex sets in cocomparability graphs and convex bipartite graphs , 1997, Acta Informatica.

[7]  Rastislav Kralovic,et al.  Minimum Feedback Vertex Sets in Shuffle-based Interconnection Networks , 2002, SIROCCO.

[8]  Mihalis Yannakakis,et al.  The Maximum k-Colorable Subgraph Problem for Chordal Graphs , 1987, Inf. Process. Lett..

[9]  Reuven Bar-Yehuda,et al.  Approximation Algorithms for the Feedback Vertex Set Problem with Applications to Constraint Satisfaction and Bayesian Inference , 1998, SIAM J. Comput..

[10]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[11]  Y. Daniel Liang On the Feedback Vertex Set Problem in Permutation Graphs , 1994, Inf. Process. Lett..

[12]  Piotr Berman,et al.  A 2-Approximation Algorithm for the Undirected Feedback Vertex Set Problem , 1999, SIAM J. Discret. Math..

[13]  Mary Lou Soffa,et al.  Feedback vertex sets and cyclically reducible graphs , 1985, JACM.

[14]  J. Siam A LINEAR TIME ALGORITHM FOR FINDING MINIMUM CUTSETS IN REDUCIBLE GRAPHS , 1979 .

[15]  David Peleg,et al.  Feedback vertex set in hypercubes , 2000, Inf. Process. Lett..

[16]  Chuan Yi Tang,et al.  A Linear-Time Algorithm for the Weighted Feedback Vertex Problem on Interval Graphs , 1997, Inf. Process. Lett..

[17]  Flaminia L. Luccio Almost Exact Minimum Feedback Vertex Set in Meshes and Butterflies , 1998, Inf. Process. Lett..

[18]  Ioannis Caragiannis,et al.  New bounds on the size of the minimum feedback vertex set in meshes and butterflies , 2002, Inf. Process. Lett..

[19]  Dieter Kratsch,et al.  Feedback Vertex Set and Longest Induced Path on AT-Free Graphs , 2003, WG.

[20]  Jean Fonlupt,et al.  The complexity of generalized clique covering , 1989, Discret. Appl. Math..

[21]  Panos M. Pardalos,et al.  Encyclopedia of Optimization , 2006 .

[22]  Mihalis Yannakakis,et al.  Node-Deletion Problems on Bipartite Graphs , 1981, SIAM J. Comput..

[23]  Panos M. Pardalos,et al.  Handbook of combinatorial optimization. Supplement , 2005 .

[24]  Amit Kumar,et al.  Wavelength conversion in optical networks , 1999, SODA '99.