Measuring and imaging nanomechanical motion with laser light

We discuss several techniques based on laser-driven interferometers and cavities to measure nanomechanical motion. With increasing complexity, they achieve sensitivities reaching from thermal displacement amplitudes, typically at the picometer scale, all the way to the quantum regime, in which radiation pressure induces motion correlated with the quantum fluctuations of the probing light. We show that an imaging modality is readily provided by scanning laser interferometry, reaching a sensitivity on the order of $$10\, {\mathrm {fm/Hz^{1/2}}}$$10fm/Hz1/2, and a transverse resolution down to $$2\,\upmu {\hbox {m}}$$2μm. We compare this approach with a less versatile, but faster (single-shot) dark-field imaging technique.

[1]  Beating quantum limits in optomechanical sensor by cavity detuning , 2006, quant-ph/0602040.

[2]  Tobias J. Kippenberg,et al.  Optomechanically Induced Transparency , 2010, Science.

[3]  O. Arcizet,et al.  High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators , 2008, 0805.1608.

[4]  I. Favero,et al.  Cavity-enhanced optical detection of carbon nanotube Brownian motion , 2012, 1211.1608.

[5]  S. Girvin,et al.  Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane , 2007, Nature.

[6]  Ilkka Tittonen,et al.  Interferometric measurements of the position of a macroscopic body: towards observation of quantum limits , 1999 .

[7]  M. Gorodetsky,et al.  Measuring nanomechanical motion with an imprecision below that at the standard quantum limit , 2010, CLEO: 2011 - Laser Science to Photonic Applications.

[8]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[9]  K. Vahala,et al.  Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction , 2006 .

[10]  V. Sudhir,et al.  Measurement-based control of a mechanical oscillator at its thermal decoherence rate , 2014, Nature.

[11]  James B. Spicer,et al.  Theoretical noise-limited sensitivity of classical interferometry , 1987 .

[12]  Jaesung Lee,et al.  Spatial mapping of multimode Brownian motions in high-frequency silicon carbide microdisk resonators , 2014, Nature Communications.

[13]  Tobias J. Kippenberg,et al.  Cavity Optomechanics with Whispering-Gallery Mode Optical Micro-Resonators , 2010, 1003.5922.

[14]  Mancini,et al.  Quantum noise reduction by radiation pressure. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[15]  T. Kippenberg,et al.  Near-field cavity optomechanics with nanomechanical oscillators , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[16]  Von Welch,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.

[17]  S. Girvin,et al.  Introduction to quantum noise, measurement, and amplification , 2008, 0810.4729.

[18]  J. Teufel,et al.  Overwhelming Thermomechanical Motion with Microwave Radiation Pressure Shot Noise. , 2015, Physical review letters.

[19]  J. Teufel,et al.  Nanomechanical motion measured with an imprecision below that at the standard quantum limit. , 2009, Nature nanotechnology.

[20]  Vladimir B. Braginsky,et al.  Quantum Measurement , 1992 .

[21]  T. Briant,et al.  Radiation-pressure cooling and optomechanical instability of a micromirror , 2006, Nature.

[22]  Qiang Lin,et al.  Supplementary Information for “ Electromagnetically Induced Transparency and Slow Light with Optomechanics ” , 2011 .

[23]  Carlton M. Caves,et al.  Quantum-Mechanical Radiation-Pressure Fluctuations in an Interferometer , 1980 .

[24]  B. Chui,et al.  Single spin detection by magnetic resonance force microscopy , 2004, Nature.

[25]  W. J. Venstra,et al.  Visualizing the Motion of Graphene Nanodrums. , 2016, Nano letters.

[26]  Optomechanical characterization of acoustic modes in a mirror , 2003, quant-ph/0305122.

[27]  A. Schliesser Cavity optomechanics and optical frequency comb generation with silica whispering-gallery-mode microresonators , 2009 .

[28]  S. Chakram,et al.  Dissipation in ultrahigh quality factor SiN membrane resonators. , 2013, Physical review letters.

[29]  G. S. Agarwal,et al.  Electromagnetically induced transparency in mechanical effects of light , 2009, 0911.4157.

[30]  M Pinard,et al.  High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor. , 2006, Physical review letters.

[31]  Reynaud,et al.  Quantum-noise reduction using a cavity with a movable mirror. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[32]  S. Gigan,et al.  Self-cooling of a micromirror by radiation pressure , 2006, Nature.

[33]  T. Hänsch,et al.  Cooling of gases by laser radiation , 1975 .

[34]  T. Hänsch,et al.  Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity , 1980 .

[35]  Florian Marquardt,et al.  Collective dynamics in optomechanical arrays , 2010, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[36]  M. Aspelmeyer,et al.  Squeezed light from a silicon micromechanical resonator , 2013, Nature.

[37]  D. Hunger,et al.  A scanning cavity microscope , 2014, Nature Communications.