On the Basic Averaging Arguments for Linear Codes

[1]  Hans-Andrea Loeliger An upper bound on the volume of discrete spheres , 1994, IEEE Trans. Inf. Theory.

[2]  Hans-Andrea Loeliger,et al.  On Existence Proofs for Asymptotically Good 15 Euclidean-Space Group Codes , 1992, Coding And Quantization.

[3]  A. Patapoutian,et al.  The (d,k) Subcode Of A Linear Block Code , 1991, Proceedings. 1991 IEEE International Symposium on Information Theory.

[4]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[5]  Philippe Piret,et al.  Algebraic constructions of Shannon codes for regular channels , 1982, IEEE Trans. Inf. Theory.

[6]  M. Tsfasman,et al.  Modular curves, Shimura curves, and Goppa codes, better than Varshamov‐Gilbert bound , 1982 .

[7]  Shu Lin,et al.  On the probability of undetected error of linear block codes , 1982 .

[8]  Gérald E. Séguin Linear ensembles of codes (Corresp.) , 1979, IEEE Trans. Inf. Theory.

[9]  Larry Carter,et al.  Universal Classes of Hash Functions , 1979, J. Comput. Syst. Sci..

[10]  Teofilo C. Ancheta Syndrome-source-coding and its universal generalization , 1976, IEEE Trans. Inf. Theory.

[11]  L. Turner Key Papers in the Development of Information Theory , 1975 .

[12]  James L. Massey,et al.  Review of 'Error-Correcting Codes, 2nd edn.' (Peterson, W. W., and Weldon, E. J., Jr.; 1972) , 1973, IEEE Trans. Inf. Theory.

[13]  Jørn Justesen,et al.  Class of constructive asymptotically good algebraic codes , 1972, IEEE Trans. Inf. Theory.

[14]  D. A. Bell,et al.  Information Theory and Reliable Communication , 1969 .

[15]  Tadao Kasami An upper bound on k/n for affine-invariant codes with fixed d/n (Corresp.) , 1969, IEEE Trans. Inf. Theory.

[16]  A. Wyner Capabilities of bounded discrepancy decoding , 1965 .

[17]  W. W. Peterson,et al.  Error-Correcting Codes. , 1962 .

[18]  E. Gilbert A comparison of signalling alphabets , 1952 .

[19]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .