Quorum-sensing-dependent regulation of biosynthesis of the polyketide antibiotic mupirocin in Pseudomonas fluorescens NCIMB 10586.

Mupirocin (pseudomonic acid) is a polyketide antibiotic, targeting isoleucyl-tRNA synthase, and produced by Pseudomonas fluorescens NCIMB 10586. It is used clinically as a topical treatment for staphylococcal infections, particularly in contexts where there is a problem with methicillin-resistant Staphylococcus aureus (MRSA). In studying the mupirocin biosynthetic cluster the authors identified two putative regulatory genes, mupR and mupI, whose predicted amino acid sequences showed significant identity to proteins involved in quorum-sensing-dependent regulatory systems such as LasR/LuxR (transcriptional activators) and LasI/LuxI (synthases for N-acylhomoserine lactones--AHLs--that activate LasR/LuxR). Inactivation by deletion mutations using a suicide vector strategy confirmed the requirement for both genes in mupirocin biosynthesis. Cross-feeding experiments between bacterial strains as well as solvent extraction showed that, as predicted, wild-type P. fluorescens NCIMB 10586 produces a diffusible substance that overcomes the defect of a mupI mutant. Use of biosensor strains showed that the MupI product can activate the Pseudomonas aeruginosa lasRlasI system and that P. aeruginosa produces one or more compounds that can replace the MupI product. Insertion of a xylE reporter gene into mupA, the first ORF of the mupirocin biosynthetic operon, showed that together mupR/mupI control expression of the operon in such a way that the cluster is switched on late in exponential phase and in stationary phase.

[1]  F. Sanger,et al.  DNA sequencing with chain-terminating inhibitors. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[2]  K. Nealson,et al.  Cellular Control of the Synthesis and Activity of the Bacterial Luminescent System , 1970, Journal of bacteriology.

[3]  G. Salmond,et al.  Multiple N-acyl-L-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[4]  A. Gornall,et al.  Determination of serum proteins by means of the biuret reaction. , 1949, The Journal of biological chemistry.

[5]  J. Hughes,et al.  Interaction of pseudomonic acid A with Escherichia coli B isoleucyl-tRNA synthetase. , 1980, The Biochemical journal.

[6]  E. Greenberg,et al.  Acyl-Homoserine Lactone Quorum Sensing in Bacteria , 2000 .

[7]  J. R. Fresco,et al.  Nucleotide Sequence , 2020, Definitions.

[8]  E. Meighen Enzymes and Genes from the lux Operons of Bioluminescent Bacteria , 1988 .

[9]  R. Kolter,et al.  Plasmid cloning vehicles derived from plasmids ColE1, F, R6K, and RK2. , 1979, Methods in enzymology.

[10]  E. Greenberg,et al.  Quorum Sensing in Burkholderia cepacia: Identification of the LuxRI Homologs CepRI , 1999, Journal of bacteriology.

[11]  T. Baldwin,et al.  Nucleotide sequence of the luxR and luxI genes and structure of the primary regulatory region of the lux regulon of Vibrio fischeri ATCC 7744 , 1988 .

[12]  J. Lecocq,et al.  Chromogenic identification of genetic regulatory signals in Bacillus subtilis based on expression of a cloned Pseudomonas gene. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[13]  L. Hsu,et al.  Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[14]  M K Winson,et al.  Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acyl homoserine lactone-mediated quorum sensing. , 1998, FEMS microbiology letters.

[15]  M. Silverman,et al.  Identification of a locus controlling expression of luminescence genes in Vibrio harveyi , 1989, Journal of bacteriology.

[16]  P. Dunlap,et al.  Multiple N-acyl-L-homoserine lactone autoinducers of luminescence in the marine symbiotic bacterium Vibrio fischeri , 1994, Journal of bacteriology.

[17]  A Fiechter,et al.  Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa , 1994, Journal of bacteriology.

[18]  J. Hughes,et al.  Inhibition of isoleucyl-transfer ribonucleic acid synthetase in Escherichia coli by pseudomonic acid. , 1978, The Biochemical journal.

[19]  B. Iglewski,et al.  Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes , 1997, Journal of bacteriology.

[20]  H. Schweizer,et al.  An improved system for gene replacement and xylE fusion analysis in Pseudomonas aeruginosa. , 1995, Gene.

[21]  T. Baldwin,et al.  Identification of the operator of the lux regulon from the Vibrio fischeri strain ATCC7744. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Christopher M Thomas,et al.  Identification of a 60 kb region of the chromosome of Pseudomonas fluorescens NCIB 10586 required for the biosynthesis of pseudomonic acid (mupirocin) , 1995 .

[23]  P. Li,et al.  TraI, a LuxI homologue, is responsible for production of conjugation factor, the Ti plasmid N-acylhomoserine lactone autoinducer. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[24]  M. Winson,et al.  Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1 , 1995, Molecular microbiology.

[25]  A. Pühler,et al.  A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria , 1983, Bio/Technology.

[26]  E. Meighen,et al.  Conversion of aldehyde to acid in the bacterial bioluminescent reaction. , 1973, Biochemistry.

[27]  R. Szittner,et al.  Nucleotide sequence, expression, and properties of luciferase coded by lux genes from a terrestrial bacterium. , 1990, The Journal of biological chemistry.

[28]  P. Seed,et al.  Activation of the Pseudomonas aeruginosa lasI gene by LasR and the Pseudomonas autoinducer PAI: an autoinduction regulatory hierarchy , 1995, Journal of bacteriology.

[29]  C. Yanisch-Perron,et al.  Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. , 1985, Gene.

[30]  D. Wood,et al.  The phzI gene of Pseudomonas aureofaciens 30-84 is responsible for the production of a diffusible signal required for phenazine antibiotic production. , 1996, Gene.

[31]  M K Winson,et al.  Quorum sensing in Aeromonas hydrophila and Aeromonas salmonicida: identification of the LuxRI homologs AhyRI and AsaRI and their cognate N-acylhomoserine lactone signal molecules , 1997, Journal of bacteriology.

[32]  K. Rinehart,et al.  Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[33]  W. Fuqua,et al.  A LuxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite , 1994, Journal of bacteriology.

[34]  G. Klein Studies on the Epstein-Barr Virus genome and the EBV-determined nuclear antigen in human malignant disease. , 1975, Cold Spring Harbor symposia on quantitative biology.

[35]  M. Simon,et al.  Nucleotide sequence of the luxA gene of Vibrio harveyi and the complete amino acid sequence of the alpha subunit of bacterial luciferase. , 1986, The Journal of biological chemistry.

[36]  M. Gambello,et al.  Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression , 1991, Journal of bacteriology.

[37]  R. Thompson,et al.  Nucleotide sequence of the luxB gene of Vibrio harveyi and the complete amino acid sequence of the beta subunit of bacterial luciferase. , 1986, The Journal of biological chemistry.

[38]  E. Greenberg,et al.  Analysis of random and site‐directed mutations in rhlI, a Pseudomonas aeruginosa gene encoding an acylhomoserine lactone synthase , 1997, Molecular microbiology.

[39]  Christopher M Thomas,et al.  Maintenance of broad host range plasmid RK2 replicons in Pseudomonas aeruginosa , 1982, Nature.

[40]  B. Iglewski,et al.  Molecular characterization and nucleotide sequence of the Pseudomonas aeruginosa elastase structural gene , 1988, Journal of bacteriology.

[41]  P. Seed,et al.  RsaL, a Novel Repressor of Virulence Gene Expression in Pseudomonas aeruginosa , 1999, Journal of bacteriology.

[42]  J. Devereux,et al.  A comprehensive set of sequence analysis programs for the VAX , 1984, Nucleic Acids Res..

[43]  K. Mullis,et al.  Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. , 1986, Cold Spring Harbor symposia on quantitative biology.

[44]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[45]  E. Greenberg,et al.  Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorum-sensing transcriptional regulators. , 1996, Annual review of microbiology.

[46]  D. Wood,et al.  Phenazine antibiotic biosynthesis in Pseudomonas aureofaciens 30-84 is regulated by PhzR in response to cell density , 1994, Journal of bacteriology.

[47]  D. A. Smith,et al.  Genetics analysis of spore germination mutants of Bacillus subtilis 168: the correlation of phenotype with map location. , 1979, Journal of general microbiology.

[48]  E. Greenberg,et al.  The C-terminal region of the Vibrio fischeri LuxR protein contains an inducer-independent lux gene activating domain. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[49]  E. Greenberg,et al.  Evidence that the N-terminal region of the Vibrio fischeri LuxR protein constitutes an autoinducer-binding domain , 1995, Journal of bacteriology.

[50]  M. Gambello,et al.  LasR of Pseudomonas aeruginosa is a transcriptional activator of the alkaline protease gene (apr) and an enhancer of exotoxin A expression , 1993, Infection and immunity.

[51]  D. Kaiser,et al.  How and why bacteria talk to each other , 1993, Cell.

[52]  M. Gambello,et al.  Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. , 1993, Science.

[53]  H. Rode,et al.  Efficacy of mupirocin in cutaneous candidiasis , 1991, The Lancet.

[54]  H. Birnboim,et al.  A rapid alkaline extraction procedure for screening recombinant plasmid DNA. , 1979, Nucleic acids research.

[55]  Christopher M Thomas,et al.  IncC of Broad-Host-Range Plasmid RK2 Modulates KorB Transcriptional Repressor Activity In Vivo and Operator Binding In Vitro , 1999, Journal of bacteriology.

[56]  E. Greenberg,et al.  Diffusion of autoinducer is involved in regulation of the Vibrio fischeri luminescence system , 1985, Journal of bacteriology.

[57]  E. Greenberg,et al.  Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators , 1994, Journal of bacteriology.

[58]  F. O'Gara,et al.  The biocontrol strain Pseudomonas fluorescens F113 produces the Rhizobium small bacteriocin, N-(3-hydroxy-7-cis-tetradecenoyl)homoserine lactone, via HdtS, a putative novel N-acylhomoserine lactone synthase. , 2000, Microbiology.

[59]  M. Schell,et al.  Hierarchical autoinduction in Ralstonia solanacearum: control of acyl-homoserine lactone production by a novel autoregulatory system responsive to 3-hydroxypalmitic acid methyl ester , 1997, Journal of bacteriology.

[60]  E. Greenberg,et al.  Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[61]  F. Gong,et al.  Molecular analysis of genes encoding phenazine biosynthesis in the biological control bacterium. Pseudomonas aureofaciens 30-84. , 1995, FEMS microbiology letters.

[62]  J H Lamb,et al.  Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. , 1997, Microbiology.

[63]  K. Tanaka,et al.  A hierarchical quorum‐sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary‐phase sigma factor RpoS , 1996, Molecular microbiology.

[64]  D. le Coq,et al.  Positive selection procedure for entrapment of insertion sequence elements in gram-negative bacteria , 1985, Journal of bacteriology.