Stability of Eigenvalues and Observable Diameter in RCD$$(1, \infty )$$ Spaces
暂无分享,去创建一个
[1] Nicola Gigli,et al. Nonsmooth differential geometry - An approach tailored for spaces with Ricci curvature bounded from below , 2014, 1407.0809.
[2] Anton Petrunin,et al. Alexandrov meets Lott-Villani-Sturm , 2010, 1003.5948.
[3] Shiu-yuen Cheng,et al. Eigenvalue comparison theorems and its geometric applications , 1975 .
[4] A. Mondino,et al. Sharp and rigid isoperimetric inequalities in metric-measure spaces with lower Ricci curvature bounds , 2015, Inventiones mathematicae.
[5] Nicola Gigli,et al. Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below , 2011, 1106.2090.
[6] Luis A. Caffarelli,et al. Monotonicity Properties of Optimal Transportation¶and the FKG and Related Inequalities , 2000 .
[7] Giuseppe Savaré. Self-improvement of the Bakry-Émery condition and Wasserstein contraction of the heat flow in $RCD (K, \infty)$ metric measure spaces , 2013, Discrete & Continuous Dynamical Systems - A.
[8] Asuka Takatsu,et al. Spectral convergence of high-dimensional spheres to Gaussian spaces , 2021, Journal of Spectral Theory.
[9] N. Gozlan,et al. A proof of the Caffarelli contraction theorem via entropic regularization , 2019, Calculus of Variations and Partial Differential Equations.
[10] M. Fathi,et al. Stability of the Bakry-Émery theorem on Rn , 2020 .
[11] E. Milman. On the role of convexity in isoperimetry, spectral gap and concentration , 2007, 0712.4092.
[12] Detang Zhou,et al. Eigenvalues of the drifted Laplacian on complete metric measure spaces , 2013, 1305.4116.
[13] C. Ketterer,et al. Stratified spaces and synthetic Ricci curvature bounds , 2018, Annales de l'Institut Fourier.
[14] M. Ledoux,et al. Analysis and Geometry of Markov Diffusion Operators , 2013 .
[15] Erwann Aubry. Pincement sur le spectre et le volume en courbure de Ricci positive , 2005 .
[16] A. Mondino,et al. Convergence of pointed non‐compact metric measure spaces and stability of Ricci curvature bounds and heat flows , 2013, 1311.4907.
[17] Nicola Gigli,et al. Displacement convexity of Entropy and the distance cost Optimal Transportation , 2021, Annales de la Faculté des sciences de Toulouse : Mathématiques.
[18] N. Gigli. An Overview of the Proof of the Splitting Theorem in Spaces with Non-Negative Ricci Curvature , 2014 .
[19] L. Ambrosio,et al. Gaussian-type Isoperimetric Inequalities in $RCD(K,\infty)$ probability spaces for positive $K$ , 2016, 1605.02852.
[20] Emanuel Milman,et al. The globalization theorem for the Curvature-Dimension condition , 2016, Inventiones mathematicae.
[21] H. Weinberger,et al. An optimal Poincaré inequality for convex domains , 1960 .
[22] B. Han. Rigidity of some functional inequalities on RCD spaces , 2020, 2001.07930.
[23] D. Bakry. L'hypercontractivité et son utilisation en théorie des semigroupes , 1994 .
[24] E. Milman. Spectral estimates, contractions and hypercontractivity , 2015, Journal of Spectral Theory.
[25] Asuka Takatsu,et al. Equality in the logarithmic Sobolev inequality , 2019, manuscripta mathematica.
[26] Nathan Ross. Fundamentals of Stein's method , 2011, 1109.1880.
[27] Alessio Figalli,et al. Rigidity and stability of Caffarelli's log-concave perturbation theorem , 2016 .
[28] ON THE APPROXIMATE NORMALITY OF EIGENFUNCTIONS OF THE LAPLACIAN , 2007, 0705.1342.
[29] L. Ambrosio,et al. Metric measure spaces with Riemannian Ricci curvature bounded from below , 2011, 1109.0222.
[30] Nicola Gigli,et al. Rigidity for the spectral gap on Rcd(K, ∞)-spaces , 2020, American Journal of Mathematics.
[31] P. Petersen. On eigenvalue pinching in positive Ricci curvature , 1999 .
[32] C. Croke. An eigenvalue pinching theorem , 1982 .