Stability of Eigenvalues and Observable Diameter in RCD$$(1, \infty )$$ Spaces

We study stability of the spectral gap and observable diameter for metricmeasure spaces satisfying the RCD(1,∞) condition. We show that if such a space has an almost maximal spectral gap, then it almost contains a Gaussian component, and the Laplacian has eigenvalues that are close to any integers, with dimension-free quantitative bounds. Under the additional assumption that the space admits a needle disintegration, we show that the spectral gap is almost maximal iff the observable diameter is almost maximal, again with quantitative dimension-free bounds.

[1]  Nicola Gigli,et al.  Nonsmooth differential geometry - An approach tailored for spaces with Ricci curvature bounded from below , 2014, 1407.0809.

[2]  Anton Petrunin,et al.  Alexandrov meets Lott-Villani-Sturm , 2010, 1003.5948.

[3]  Shiu-yuen Cheng,et al.  Eigenvalue comparison theorems and its geometric applications , 1975 .

[4]  A. Mondino,et al.  Sharp and rigid isoperimetric inequalities in metric-measure spaces with lower Ricci curvature bounds , 2015, Inventiones mathematicae.

[5]  Nicola Gigli,et al.  Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below , 2011, 1106.2090.

[6]  Luis A. Caffarelli,et al.  Monotonicity Properties of Optimal Transportation¶and the FKG and Related Inequalities , 2000 .

[7]  Giuseppe Savaré Self-improvement of the Bakry-Émery condition and Wasserstein contraction of the heat flow in $RCD (K, \infty)$ metric measure spaces , 2013, Discrete & Continuous Dynamical Systems - A.

[8]  Asuka Takatsu,et al.  Spectral convergence of high-dimensional spheres to Gaussian spaces , 2021, Journal of Spectral Theory.

[9]  N. Gozlan,et al.  A proof of the Caffarelli contraction theorem via entropic regularization , 2019, Calculus of Variations and Partial Differential Equations.

[10]  M. Fathi,et al.  Stability of the Bakry-Émery theorem on Rn , 2020 .

[11]  E. Milman On the role of convexity in isoperimetry, spectral gap and concentration , 2007, 0712.4092.

[12]  Detang Zhou,et al.  Eigenvalues of the drifted Laplacian on complete metric measure spaces , 2013, 1305.4116.

[13]  C. Ketterer,et al.  Stratified spaces and synthetic Ricci curvature bounds , 2018, Annales de l'Institut Fourier.

[14]  M. Ledoux,et al.  Analysis and Geometry of Markov Diffusion Operators , 2013 .

[15]  Erwann Aubry Pincement sur le spectre et le volume en courbure de Ricci positive , 2005 .

[16]  A. Mondino,et al.  Convergence of pointed non‐compact metric measure spaces and stability of Ricci curvature bounds and heat flows , 2013, 1311.4907.

[17]  Nicola Gigli,et al.  Displacement convexity of Entropy and the distance cost Optimal Transportation , 2021, Annales de la Faculté des sciences de Toulouse : Mathématiques.

[18]  N. Gigli An Overview of the Proof of the Splitting Theorem in Spaces with Non-Negative Ricci Curvature , 2014 .

[19]  L. Ambrosio,et al.  Gaussian-type Isoperimetric Inequalities in $RCD(K,\infty)$ probability spaces for positive $K$ , 2016, 1605.02852.

[20]  Emanuel Milman,et al.  The globalization theorem for the Curvature-Dimension condition , 2016, Inventiones mathematicae.

[21]  H. Weinberger,et al.  An optimal Poincaré inequality for convex domains , 1960 .

[22]  B. Han Rigidity of some functional inequalities on RCD spaces , 2020, 2001.07930.

[23]  D. Bakry L'hypercontractivité et son utilisation en théorie des semigroupes , 1994 .

[24]  E. Milman Spectral estimates, contractions and hypercontractivity , 2015, Journal of Spectral Theory.

[25]  Asuka Takatsu,et al.  Equality in the logarithmic Sobolev inequality , 2019, manuscripta mathematica.

[26]  Nathan Ross Fundamentals of Stein's method , 2011, 1109.1880.

[27]  Alessio Figalli,et al.  Rigidity and stability of Caffarelli's log-concave perturbation theorem , 2016 .

[28]  ON THE APPROXIMATE NORMALITY OF EIGENFUNCTIONS OF THE LAPLACIAN , 2007, 0705.1342.

[29]  L. Ambrosio,et al.  Metric measure spaces with Riemannian Ricci curvature bounded from below , 2011, 1109.0222.

[30]  Nicola Gigli,et al.  Rigidity for the spectral gap on Rcd(K, ∞)-spaces , 2020, American Journal of Mathematics.

[31]  P. Petersen On eigenvalue pinching in positive Ricci curvature , 1999 .

[32]  C. Croke An eigenvalue pinching theorem , 1982 .