A jointly constrained bilinear programming method for solving generalized Cournot-Pareto models

We propose a vector optimization approach to linear Cournot oligopolistic market equilibrium models where the strategy sets depend on each other. We use scalarization technique to find a Pareto efficient solution to the model by using a jointly constrained bilinear programming formulation. We then propose a decomposition branch-and-bound algorithm for globally solving the resulting bilinear problem. The subdivision takes place in one-dimensional intervals that enables solving the problem with relatively large sizes. Numerical experiments and results on randomly generated data show the efficiency of the proposed algorithm.

[1]  Oliver Stein,et al.  Smoothness properties of a regularized gap function for quasi-variational inequalities , 2014, Optim. Methods Softw..

[2]  Le Dung Muu,et al.  Method for minimizing a convex-concave function over a convex set , 1991 .

[3]  Christian Kanzow,et al.  On a Smooth Dual Gap Function for a Class of Quasi-Variational Inequalities , 2014, J. Optim. Theory Appl..

[4]  Le Dung Muu,et al.  A Global Optimization Method for Solving Convex Quadratic Bilevel Programming Problems , 2003, J. Glob. Optim..

[5]  Aparna Mehra,et al.  Gap functions and error bounds for quasi variational inequalities , 2012, J. Glob. Optim..

[6]  T. Q. Phong,et al.  Scalarizing Functions for Generating the Weakly Efficient Solution Set in Convex Multiobjective Problems , 2005, SIAM J. Optim..

[7]  Francisco Facchinei,et al.  Solving quasi-variational inequalities via their KKT conditions , 2014, Math. Program..

[8]  V. H. Nguyen,et al.  On Nash–Cournot oligopolistic market equilibrium models with concave cost functions , 2008, J. Glob. Optim..

[9]  Didier Aussel,et al.  Gap Functions for Quasivariational Inequalities and Generalized Nash Equilibrium Problems , 2011, J. Optim. Theory Appl..

[10]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[11]  A. Nagurney Network Economics: A Variational Inequality Approach , 1992 .

[12]  M. Fukushima A class of gap functions for quasi-variational inequality problems , 2007 .

[13]  Jean Jacques Strodiot,et al.  A new class of hybrid extragradient algorithms for solving quasi-equilibrium problems , 2013, J. Glob. Optim..

[14]  H. Nikaidô,et al.  Note on non-cooperative convex game , 1955 .

[15]  T. D. Quoc,et al.  A splitting proximal point method for Nash-Cournot equilibrium models involving nonconvex cost functions , 2011, 1105.2632.

[16]  Massimo Pappalardo,et al.  Existence and solution methods for equilibria , 2013, Eur. J. Oper. Res..

[17]  P. Yu Multiple-Criteria Decision Making: "Concepts, Techniques, And Extensions" , 2012 .

[18]  I. Konnov Combined Relaxation Methods for Variational Inequalities , 2000 .

[19]  Masao Fukushima,et al.  Gap Function Approach to the Generalized Nash Equilibrium Problem , 2010 .

[20]  F. Al-Khayyal Jointly constrained bilinear programs and related problems: an overview , 1990 .

[21]  Masao Fukushima,et al.  Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games , 2009, Comput. Manag. Sci..

[22]  Hanif D. Sherali,et al.  A mathematical programming approach for determining oligopolistic market equilibrium , 1982, Math. Program..

[23]  C. Tammer,et al.  Theory of Vector Optimization , 2003 .

[24]  Francisco Facchinei,et al.  Generalized Nash Equilibrium Problems , 2010, Ann. Oper. Res..