On the p -norm condition number of the multivariate triangular Bernstein basis

We show that the p-norm condition number of the s-variate triangular Bernstein basis for polynomials of degree n grows at most as O(n s 2 n ) for xed s and increasing n. This is essentially the same growth as has already been established

[1]  Karl Scherer,et al.  New Upper Bound for the B-Spline Basis Condition Number , 1999 .

[2]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  A. Timan Theory of Approximation of Functions of a Real Variable , 1994 .

[5]  D. Wilhelmsen,et al.  A Markov inequality in several dimensions , 1974 .

[6]  A Note on the Condition Numbers of the B-Spline Bases , 1978 .

[7]  P. Appell,et al.  Fonctions hypergéométriques et hypersphériques : polynomes d'Hermite , 1926 .

[8]  Günther Nürnberger,et al.  Multivariate Approximation and Splines , 1997 .

[9]  C. D. Boor,et al.  B-Form Basics. , 1986 .

[10]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[11]  Carl de Boor,et al.  On Local Linear Functionals which Vanish at all B-Splines but One. , 1975 .

[12]  Tom Lyche,et al.  On the L1-condition number of the univariate Bernstein basis , 2002 .

[13]  Josef Hoschek,et al.  Fundamentals of computer aided geometric design , 1996 .

[14]  Z. Ciesielski,et al.  The degenerate B-splines as a basis in the space of algebraic polynomials , 1985 .

[15]  Marie-Madeleine Derriennic On multivariate approximation by Bernstein-type polynomials , 1985 .

[16]  E. Wagner International Series of Numerical Mathematics , 1963 .

[17]  Z Ciesielski Approximation by algebraic polynomials on simplexes , 1985 .

[18]  George G. Lorentz,et al.  Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.

[19]  L. Schumaker Spline Functions: Basic Theory , 1981 .