Time discretization of vibro‐impact

We consider vibro–impact problems, i.e. mechanical systems with a finite number of degrees of freedom submitted to perfect unilateral constraints. The dynamics is basically described by a second–order measure differential inclusion for the unknown position completed with a constitutive impact law. Another formulation of the problem as a frictionless sweeping process is possible: the unknown velocity belongs to an appropriate functional space and satisfies a first order measure differential inclusion. The equivalence of these two formulations is studied. They lead to time–discretizations written in terms of positions or in terms of velocities, respectively. We present these different schemes and we compare them on the simple test–problem of a bouncing ball. We recall the convergence results in the single constraint case. Moreover, an example of implementation of the scheme derived from the basic description of the dynamics is presented. Finally, in the multi–constraint case, we point out some theoretical and computational difficulties.

[1]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[2]  Giuseppe Buttazzo,et al.  The bounce problem, on n-dimensional Riemannian manifolds , 1981 .

[3]  M. Marques Differential Inclusions in Nonsmooth Mechanical Problems , 1993 .

[4]  Laetitia Paoli,et al.  Mouvement à un nombre fini de degrés de liberté avec contraintes unilatérales: cas avec perte d'énergie , 1993 .

[5]  Aldo Bressan Questioni di regolarità e di unicità del moto in presenza di vincoli olonomi unilaterali , 1959 .

[6]  Laetitia Paoli Analyse numérique de vibrations avec contraintes unilatérales , 1993 .

[7]  M. Schatzman A class of nonlinear differential equations of second order in time , 1978 .

[8]  L. Paoli,et al.  Approximation et existence en vibro-impact , 1999 .

[9]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[10]  D. Stewart Existence of solutions to rigid body dynamics and the Painlevé paradoxes , 1997 .

[11]  J. Moreau Numerical aspects of the sweeping process , 1999 .

[12]  Mongi Mabrouk Liaisons unilatérales et chocs élastiques quelconques: un résultat d'existence , 1998 .

[13]  D. Stewart Convergence of a Time‐Stepping Scheme for Rigid‐Body Dynamics and Resolution of Painlevé's Problem , 1998 .

[14]  D. Stoianovici,et al.  A Critical Study of the Applicability of Rigid-Body Collision Theory , 1996 .

[15]  Danilo Percivale Bounce problem with weak hypotheses of regularity , 1986 .

[16]  Laetitia Paoli,et al.  Vibrations avec contraintes unilatérales et perte d'énergie aux impacts, en dimension finie , 1993 .

[17]  Patrick Ballard Dynamique des systèmes mécaniques discrets avec liaisons unilatérales parfaites , 1999 .

[18]  L. Paoli,et al.  ILL-POSEDNESS IN VIBRO-IMPACT AND ITS NUMERICAL CONSEQUENCES , 2000 .

[19]  M. Schatzman Uniqueness and continuous dependence on data for one-dimensional impact problems , 1998 .

[20]  J. Moreau,et al.  Unilateral Contact and Dry Friction in Finite Freedom Dynamics , 1988 .

[21]  Peter Ravn,et al.  A Continuous Analysis Method for Planar Multibody Systems with Joint Clearance , 1998 .

[22]  Michele Carriero,et al.  Uniqueness of the one-dimensional bounce problem as a generic property in , 1980 .

[23]  Laetitia Paoli AN EXISTENCE RESULT FOR VIBRATIONS WITH UNILATERAL CONSTRAINTS , 2000 .

[24]  É. Delassus,et al.  Mémoire sur la théorie des liaisons finies unilatérales , 1917 .

[25]  Laetitia Paoli,et al.  Dynamical Impact Problem With Loss Of Energy: Numerical Study For Large Times. Application To A Model Of Tight Joints , 1970 .

[26]  Laetitia Paoli,et al.  A numerical scheme for impact problems , 1999 .

[27]  M. Mabrouk A unified variational model for the dynamics of perfect unilateral constraints , 1998 .

[28]  J. Moreau Liaisons unilatérales sans frottement et chocs inélastiques , 1983 .

[29]  Sabine Durand Dynamique des systemes a liaisons unilaterales avec frottement sec , 1996 .

[30]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[31]  Markus Kunze,et al.  An Introduction to Moreau’s Sweeping Process , 2000 .

[32]  J. Moreau Standard Inelastic Shocks and the Dynamics of Unilateral Constraints , 1985 .

[33]  J. Moreau Numerical Experiments in Granular Dynamics: Vibration-Induced Size Segregation , 1995 .

[34]  Steven W. Shaw,et al.  The transition to chaos in a simple mechanical system , 1989 .

[35]  Danilo Percivale,et al.  Uniqueness in the elastic bounce problem, II , 1985 .

[36]  Laetitia Paoli,et al.  Theoretical and Numerical Study for a Model of Vibrations with Unilateral Constraints , 1995 .

[37]  Giuseppe Buttazzo,et al.  On the approximation of the elastic bounce problem on Riemannian manifolds , 1983 .