Development and Validation of GANN Model for Evapotranspiration Estimation

The present study was carried out to develop generalized artificial neural network (GANN) based reference crop evapotranspiration models corresponding to FAO-56 PM, FAO-24 Radiation, Turc, and FAO-24 Blaney–Criddle methods. The generalized ANN models were developed using the data from four California Irrigation Management Information System (CIMIS) stations, namely, Davis, Castroville, Mulberry, and West Side Field Station. The average weighted standard error of estimate (WSEE) for the developed models, namely, GANN (4-5-1), GANN (3-4-1), GANN (5-6-1), and GANN (6-7-1) corresponding to the FAO-24 Blaney–Criddle, FAO-24 Radiation, Turc, and FAO-56PM was 0.72, 0.85, 0.63, and 0.48 mm day−1 , respectively. The developed ANN models were applied at 2 CIMIS stations namely, Lodhi and Fresno, without any local training. The average WSEE for models GANN (4-5-1), GANN (3-4-1), GANN (5-6-1), and GANN (6-7-1) was 0.68, 0.71, 0.65, and 0.46 mm day−1 , respectively In addition, the GANN (4-5-1) model corresponding to ...

[1]  Ozgur Kisi,et al.  Evapotranspiration modelling from climatic data using a neural computing technique , 2007 .

[2]  Narendra Singh Raghuwanshi,et al.  Estimating Evapotranspiration using Artificial Neural Network , 2002 .

[3]  N. Null Artificial Neural Networks in Hydrology. I: Preliminary Concepts , 2000 .

[4]  null null,et al.  Artificial Neural Networks in Hydrology. II: Hydrologic Applications , 2000 .

[5]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[6]  Daniel C. Yoder,et al.  Optimization of Fuzzy Evapotranspiration Model Through Neural Training with Input-Output Examples , 2001 .

[7]  H. L. Penman,et al.  Vegetation and hydrology , 1963 .

[8]  J. E. Christiansen,et al.  Pan Evaporation and Evapotranspiration from Climatic Data , 1968 .

[9]  Devendra M. Amatya,et al.  Comparison of methods for estimating REF-ET , 1995 .

[10]  Francis H. S. Chiew,et al.  PENMAN-MONTEITH, FAO-24 REFERENCE CROP EVAPOTRANSPIRATION AND CLASS-A PAN DATA IN AUSTRALIA , 1995 .

[11]  Holger R. Maier,et al.  Neural networks for the prediction and forecasting of water resource variables: a review of modelling issues and applications , 2000, Environ. Model. Softw..

[12]  Richard G. Allen,et al.  Comparison of Reference Evapotranspiration Calculations as Part of the ASCE Standardization Effort , 2003 .

[13]  Marvin E. Jensen,et al.  ASCE's standardized reference evapotranspiration equation. , 2001 .

[14]  James L. Wright,et al.  New Evapotranspiration Crop Coefficients , 1982 .

[15]  C. W. Thornthwaite An approach toward a rational classification of climate. , 1948 .

[16]  S. S. Zanetti,et al.  Estimating Evapotranspiration Using Artificial Neural Network and Minimum Climatological Data , 2007 .

[17]  George H. Hargreaves,et al.  Reference Crop Evapotranspiration from Temperature , 1985 .

[18]  Marvin E. Jensen,et al.  Peak Water Requirements of Crops in Southern Idaho , 1972 .

[19]  Branimir Todorovic,et al.  Forecasting of Reference Evapotranspiration by Artificial Neural Networks , 2003 .

[20]  R. Allen,et al.  Evapotranspiration and Irrigation Water Requirements , 1990 .

[21]  Luis S. Pereira,et al.  Evapotranspiration: Concepts and Future Trends , 1999 .

[22]  Richard G. Allen,et al.  Comparison of reference evapotranspiration calculations across a range of climates. , 2000 .

[23]  Ö. Kisi Generalized regression neural networks for evapotranspiration modelling , 2006 .

[24]  Baryohay Davidoff,et al.  Comparison of Some Reference Evapotranspiration Equations for California , 2005 .

[25]  George H. Hargreaves,et al.  Moisture availability and crop production. , 1975 .

[26]  C. Priestley,et al.  On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters , 1972 .

[27]  K. P. Sudheer,et al.  Estimating Actual Evapotranspiration from Limited Climatic Data Using Neural Computing Technique , 2003 .

[28]  J. Monteith Evaporation and surface temperature , 2007 .

[29]  Derrel L. Martin,et al.  Issues, requirements and challenges in selecting and specifying a standardized ET equation. , 2000 .

[30]  Christian W. Dawson,et al.  Hydrological modelling using artificial neural networks , 2001 .