BSIM—SPICE Models Enable FinFET and UTB IC Designs

Two turn-key surface potential-based compact models are developed to simulate multigate transistors for integrated circuit (IC) designs. The BSIM-CMG (common-multigate) model is developed to simulate double-, triple-, and all-around-gate FinFETs and it is selected as the world's first industry-standard compact model for the FinFET. The BSIM-IMG (independent-multigate) model is developed for independent double-gate, ultrathin body (UTB) transistors, capturing the dynamic threshold voltage adjustment with back gate bias. Starting from long-channel devices, the basic models are first obtained using a Poisson-carrier transport approach. The basic models agree with the results of numerical two-dimensional device simulators. The real-device effects then augment the basic models. All the important real-device effects, such as short-channel effects (SCEs), quantum mechanical confinement effects, mobility degradation, and parasitics are included in the models. BSIM-CMG and BSIM-IMG have been validated with hardware silicon-based data from multiple technologies. The developed models also meet the stringent quality assurance tests expected of production level models.

[1]  Bing J. Sheu,et al.  BSIM: Berkeley short-channel IGFET model for MOS transistors , 1987 .

[2]  Yuan Taur,et al.  Analytic solutions of charge and capacitance in symmetric and asymmetric double-gate MOSFETs , 2001 .

[3]  G. Guegan,et al.  Towards the limits of conventional MOSFETs: case of sub 30 nm NMOS devices , 2004 .

[4]  C. Merckling,et al.  Germanium for advanced CMOS anno 2009: a SWOT analysis , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[5]  Wei Huang,et al.  An exercise of ET/UTBB SOI CMOS modeling and simulation with BSIM-IMG , 2011, IEEE 2011 International SOI Conference.

[6]  Chenming Calvin Hu,et al.  Modern Semiconductor Devices for Integrated Circuits , 2009 .

[7]  Chenming Hu,et al.  Modeling Advanced FET Technology in a Compact Model , 2006, IEEE Transactions on Electron Devices.

[8]  M. D. Giles,et al.  Process Technology Variation , 2011, IEEE Transactions on Electron Devices.

[9]  J. Kavalieros,et al.  High performance fully-depleted tri-gate CMOS transistors , 2003, IEEE Electron Device Letters.

[10]  Kelin J. Kuhn,et al.  Moore's Law Past 32nm: Future Challenges in Device Scaling , 2009, 2009 13th International Workshop on Computational Electronics.

[11]  Y. Taur,et al.  A continuous, analytic drain-current model for DG MOSFETs , 2004 .

[12]  C. Sah,et al.  Effects of diffusion current on characteristics of metal-oxide (insulator)-semiconductor transistors☆ , 1966 .

[13]  C. Auth,et al.  A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors , 2012, 2012 Symposium on VLSI Technology (VLSIT).

[14]  T. Adam,et al.  Fully depleted extremely thin SOI technology fabricated by a novel integration scheme featuring implant-free, zero-silicon-loss, and faceted raised source/drain , 2006, 2009 Symposium on VLSI Technology.

[15]  C.C. McAndrew,et al.  Validation of MOSFET model Source–Drain Symmetry , 2006, IEEE Transactions on Electron Devices.

[16]  Tetsu Tanaka,et al.  Analysis of p/sup +/ poly Si double-gate thin-film SOI MOSFETs , 1991, International Electron Devices Meeting 1991 [Technical Digest].

[17]  Chris Auth,et al.  22-nm fully-depleted tri-gate CMOS transistors , 2012, Proceedings of the IEEE 2012 Custom Integrated Circuits Conference.

[18]  H. Wong,et al.  CMOS scaling into the nanometer regime , 1997, Proc. IEEE.

[19]  Chenming Hu,et al.  Ultra-thin body PMOSFETs with selectively deposited Ge source/drain , 2001, 2001 Symposium on VLSI Technology. Digest of Technical Papers (IEEE Cat. No.01 CH37184).

[20]  M. A. Karim,et al.  BSIM-IMG: A Compact Model for Ultrathin-Body SOI MOSFETs With Back-Gate Control , 2012, IEEE Transactions on Electron Devices.

[21]  O. Weber,et al.  Planar Fully depleted SOI technology: A powerful architecture for the 20nm node and beyond , 2010, 2010 International Electron Devices Meeting.

[22]  A. Toffoli,et al.  Low leakage and low variability Ultra-Thin Body and Buried Oxide (UT2B) SOI technology for 20nm low power CMOS and beyond , 2010, 2010 Symposium on VLSI Technology.

[23]  K. J. Kuhn,et al.  Considerations for Ultimate CMOS Scaling , 2012, IEEE Transactions on Electron Devices.

[24]  Ali M. Niknejad,et al.  BSIM6: Symmetric Bulk MOSFET Model , 2012 .

[25]  Chenming Hu,et al.  A folded-channel MOSFET for deep-sub-tenth micron era , 1998, International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217).

[26]  Christian Enz,et al.  A Design Oriented Charge-based Current Model for Symmetric DG MOSFET and its Correlation with the EKV Formalism , 2005 .

[27]  T. Fukui,et al.  Steep-slope tunnel field-effect transistors using III–V nanowire/Si heterojunction , 2012, 2012 Symposium on VLSI Technology (VLSIT).

[28]  T. Adam,et al.  ETSOI CMOS for system-on-chip applications featuring 22nm gate length, sub-100nm gate pitch, and 0.08µm2 SRAM cell , 2011, 2011 Symposium on VLSI Circuits - Digest of Technical Papers.

[29]  L. D. Yau,et al.  A simple theory to predict the threshold voltage of short-channel IGFET's , 1974 .

[30]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[31]  Jin-Woo Han,et al.  Sub-5nm All-Around Gate FinFET for Ultimate Scaling , 2006, 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers..

[32]  Ali M. Niknejad,et al.  BSIM-CG: A compact model of cylindrical/surround gate MOSFET for circuit simulations , 2012 .

[33]  O. Faynot,et al.  Strained FDSOI CMOS technology scalability down to 2.5nm film thickness and 18nm gate length with a TiN/HfO2 gate stack , 2007, 2007 IEEE International Electron Devices Meeting.

[34]  C. Hu,et al.  Si tunnel transistors with a novel silicided source and 46mV/dec swing , 2010, 2010 Symposium on VLSI Technology.

[35]  G. Dewey,et al.  Advanced high-K gate dielectric for high-performance short-channel In0.7Ga0.3As quantum well field effect transistors on silicon substrate for low power logic applications , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[36]  F. Schwierz Graphene transistors. , 2010, Nature nanotechnology.

[37]  O. Rozeau,et al.  Multi-$V_{T}$ UTBB FDSOI Device Architectures for Low-Power CMOS Circuit , 2011, IEEE Transactions on Electron Devices.

[38]  Xiaoqing Pan,et al.  Experimental evidence of ferroelectric negative capacitance in nanoscale heterostructures , 2011, 1103.4419.

[39]  K. Fujita,et al.  Advanced channel engineering achieving aggressive reduction of VT variation for ultra-low-power applications , 2011, 2011 International Electron Devices Meeting.

[40]  William Liu,et al.  MOSFET Models for SPICE Simulation: Including BSIM3v3 and BSIM4 , 2001 .

[41]  Yuan Taur,et al.  Device scaling limits of Si MOSFETs and their application dependencies , 2001, Proc. IEEE.

[42]  Xin Zhang,et al.  A non-iterative physical procedure for RF CMOS compact model extraction using BSIM6 , 2012, Proceedings of the IEEE 2012 Custom Integrated Circuits Conference.

[43]  Mohan Vamsi Dunga,et al.  Nanoscale CMOS modeling , 2008 .

[44]  W. Grabinski,et al.  RF distortion analysis with compact MOSFET models , 2004, Proceedings of the IEEE 2004 Custom Integrated Circuits Conference (IEEE Cat. No.04CH37571).

[45]  Bin Yu,et al.  FinFET scaling to 10 nm gate length , 2002, Digest. International Electron Devices Meeting,.

[46]  R.R. Troutman,et al.  VLSI limitations from drain-induced barrier lowering , 1979, IEEE Transactions on Electron Devices.

[47]  A. Javey,et al.  High-performance single layered WSe₂ p-FETs with chemically doped contacts. , 2012, Nano letters.

[48]  Weidong Liu,et al.  BSIM4 and MOSFET Modeling For IC Simulation , 2011, International Series on Advances in Solid State Electronics and Technology.

[49]  M. A. Karim,et al.  Phenomenological Compact Model for QM Charge Centroid in Multigate FETs , 2013, IEEE Transactions on Electron Devices.

[50]  Chenming Hu,et al.  Ultrathin-body SOI MOSFET for deep-sub-tenth micron era , 2000, IEEE Electron Device Letters.

[51]  H. Sunamura,et al.  Ultra-thin-body and BOX (UTBB) fully depleted (FD) device integration for 22nm node and beyond , 2010, 2010 Symposium on VLSI Technology.

[52]  G. Gildenblat,et al.  Benchmark Tests for MOSFET Compact Models With Application to the PSP Model , 2009, IEEE Transactions on Electron Devices.

[53]  Darsen D. Lu,et al.  Compact Models for Future Generation CMOS , 2011 .

[54]  C. Hu,et al.  Threshold voltage model for deep-submicrometer MOSFETs , 1993 .

[55]  G. Dewey,et al.  Electrostatics improvement in 3-D tri-gate over ultra-thin body planar InGaAs quantum well field effect transistors with high-K gate dielectric and scaled gate-to-drain/gate-to-source separation , 2011, 2011 International Electron Devices Meeting.

[56]  Chenming Hu,et al.  Sub 50-nm FinFET: PMOS , 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318).

[57]  L. Nagel,et al.  SPICE (Simulation Program with Integrated Circuit Emphasis) , 1973 .

[58]  Chenming Hu,et al.  5nm-gate nanowire FinFET , 2004, Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004..

[59]  X. Garros,et al.  /spl Omega/FETs transistors with TiN metal gate and HfO/sub 2/ down to 10nm , 2005, Digest of Technical Papers. 2005 Symposium on VLSI Technology, 2005..