An integrated lattice Boltzmann and finite volume method for the simulation of viscoelastic fluid flows

Abstract A novel integrated scheme for modeling incompressible polymer viscoelastic fluid flows is proposed. Lattice Boltzmann method (LBM) is incorporated into finite volume method (FVM) to solve the incompressible Navier–Stokes equations and the constitutive equation respectively, and is implemented using open source CFD toolkits to predict nonlinear dynamics of polymer viscoelastic fluid flows. The hybrid numerical scheme inherits the efficiency and scalability of LBM and maintains the accuracy and generality of FVM. It has been critically validated using the Oldroyd-B model and linear PTT model under Poiseuille flow, Taylor-Green vortex flow and 4 : 1 abrupt planar contraction flow, respectively. The results from the integrated scheme have good agreement with the analytical solutions and the numerical results of other FVM schemes in previous publications.

[1]  Guy Courbebaisse,et al.  Simulation of generalized Newtonian fluids with the lattice Boltzmann method , 2007 .

[2]  Shiyi Chen,et al.  Stability Analysis of Lattice Boltzmann Methods , 1993, comp-gas/9306001.

[3]  A. Peterlin,et al.  Streaming birefringence of soft linear macromolecules with finite chain length , 1961 .

[4]  L. Luo,et al.  Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model , 1997 .

[5]  F. Pinho,et al.  Benchmark solutions for the flow of Oldroyd-B and PTT fluids in planar contractions , 2003 .

[6]  Marcel Crochet,et al.  Polymer solution characterization with the FENE-P model , 1998 .

[7]  Fernando T. Pinho,et al.  The flow of viscoelastic fluids past a cylinder : finite-volume high-resolution methods , 2001 .

[8]  A. Ladd,et al.  Lattice-Boltzmann Simulations of Particle-Fluid Suspensions , 2001 .

[9]  H. R. Warner,et al.  Kinetic Theory and Rheology of Dilute Suspensions of Finitely Extendible Dumbbells , 1972 .

[10]  B. Shi,et al.  Discrete lattice effects on the forcing term in the lattice Boltzmann method. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Pierre Lallemand,et al.  Consistent initial conditions for lattice Boltzmann simulations , 2006 .

[12]  L. Luo,et al.  A priori derivation of the lattice Boltzmann equation , 1997 .

[13]  Jie Ouyang,et al.  Lattice Boltzmann method for the simulation of viscoelastic fluid flows over a large range of Weissenberg numbers , 2013 .

[14]  S. C. Omowunmi,et al.  Time-dependent non-linear dynamics of polymer solutions in microfluidic contraction flow—a numerical study on the role of elongational viscosity , 2013, Rheologica Acta.

[15]  R. Tanner,et al.  SPH simulations of transient viscoelastic flows at low Reynolds number , 2005 .

[16]  R. Tanner,et al.  A new constitutive equation derived from network theory , 1977 .

[17]  N. D. Waters,et al.  Unsteady flow of an elastico-viscous liquid , 1970 .

[18]  Li-Shi Luo,et al.  Unified Theory of Lattice Boltzmann Models for Nonideal Gases , 1998 .

[19]  Michel Deville,et al.  Lattice Boltzmann method for the simulation of viscoelastic fluid flows , 2010 .

[20]  P. Bhatnagar,et al.  A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .

[21]  N. Phan-Thien,et al.  Numerical modelling of transient viscoelastic flows , 2004 .

[22]  M. Webster,et al.  A cell-vertex finite volume/element method on triangles for abrupt contraction viscoelastic flows , 2001 .

[23]  Li-Shi Luo,et al.  Some Progress in Lattice Boltzmann Method. Part I. Nonuniform Mesh Grids , 1996 .

[24]  Hirotada Ohashi,et al.  A Lattice Boltzmann model for polymeric liquids , 2005 .

[25]  J. Oldroyd On the formulation of rheological equations of state , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[26]  Nicolas Fiétier Numerical simulation of viscoelastic fluid flows by spectral element methods and time-dependent algorithms , 2002 .

[27]  M. F. Webster,et al.  Taylor‐Galerkin algorithms for viscoelastic flow: Application to a model problem , 1994 .

[28]  Xiaoyi He,et al.  Lattice Boltzmann Method on Curvilinear Coordinates System , 1997 .

[29]  Y. Qian,et al.  Lattice BGK Models for Navier-Stokes Equation , 1992 .

[30]  Hirotada Ohashi,et al.  Dynamic simulation of multi-component viscoelastic fluids using the lattice Boltzmann method , 2006 .

[31]  M. F. Webster,et al.  Highly elastic solutions for Oldroyd-B and Phan-Thien/Tanner fluids with a finite volume/element method: planar contraction flows , 2002 .

[32]  M. F. Tomé,et al.  A finite difference technique for simulating unsteady viscoelastic free surface flows , 2002 .

[33]  S. Zaleski,et al.  Lattice Boltzmann model of immiscible fluids. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[34]  Li-Shi Luo,et al.  Some progress in the lattice Boltzmann method: Reynolds number enhancement in simulations , 1997 .

[35]  N. Phan-Thien A Nonlinear Network Viscoelastic Model , 1978 .

[36]  Y. Yeow,et al.  Representation of Stokes Flow Through a Planar Contraction by Papkovich-Fadle Eigenfunctions , 1999 .

[37]  J. Koelman,et al.  A Simple Lattice Boltzmann Scheme for Navier-Stokes Fluid Flow , 1991 .