Greedy heuristic algorithm for packing equal circles into a circular container
暂无分享,去创建一个
Sanya Liu | Ting Song | Xiangyang Tang | Mao Chen | Zhizhong Zeng | Xicheng Peng | Sanya Liu | Xiangyan Tang | Mao Chen | Xicheng Peng | Zhizhong Zeng | Ting Song
[1] H. Melissen,et al. Densest packings of eleven congruent circles in a circle , 1994 .
[2] Yu Li,et al. New heuristics for packing unequal circles into a circular container , 2006, Comput. Oper. Res..
[3] De-fu Zhang,et al. An effective hybrid algorithm for the problem of packing circles into a larger containing circle , 2005, Comput. Oper. Res..
[4] Mhand Hifi,et al. A beam search algorithm for the circular packing problem , 2009, Comput. Oper. Res..
[5] Patric R. J. Östergård,et al. Dense packings of congruent circles in a circle , 1998, Discret. Math..
[6] Rym M'Hallah,et al. Adaptive beam search lookahead algorithms for the circular packing problem , 2010, Int. Trans. Oper. Res..
[7] F. Fodor. The Densest Packing of 19 Congruent Circles in a Circle , 1999 .
[8] Andrea Grosso,et al. Solving the problem of packing equal and unequal circles in a circular container , 2010, J. Glob. Optim..
[9] U. Pirl. Der Mindestabstand von n in der Einheitskreisscheibe gelegenen Punkten , 1969 .
[10] Tao Ye,et al. Global optimization method for finding dense packings of equal circles in a circle , 2011, Eur. J. Oper. Res..
[11] Nenad Mladenovic,et al. Reformulation descent applied to circle packing problems , 2003, Comput. Oper. Res..
[12] Huaiqing Wang,et al. An improved algorithm for the packing of unequal circles within a larger containing circle , 2002, Eur. J. Oper. Res..