An Evaluation of Selection Strategies for Active Learning with Regression

.......................................................................................................................... ii Acknowledgements........................................................................................................ iii Table of

[1]  John Blitzer,et al.  Biographies, Bollywood, Boom-boxes and Blenders: Domain Adaptation for Sentiment Classification , 2007, ACL.

[2]  D. Opitz,et al.  Popular Ensemble Methods: An Empirical Study , 1999, J. Artif. Intell. Res..

[3]  Zbigniew Telec,et al.  Nonparametric statistical analysis for multiple comparison of machine learning regression algorithms , 2012, Int. J. Appl. Math. Comput. Sci..

[4]  Daniela M. Witten,et al.  An Introduction to Statistical Learning: with Applications in R , 2013 .

[5]  Andrew McCallum,et al.  Employing EM and Pool-Based Active Learning for Text Classification , 1998, ICML.

[6]  Vladimir Vovk,et al.  Kernel Ridge Regression , 2013, Empirical Inference.

[7]  David Cohn,et al.  Active Learning , 2010, Encyclopedia of Machine Learning.

[8]  Daphne Koller,et al.  Support Vector Machine Active Learning with Applications to Text Classification , 2000, J. Mach. Learn. Res..

[9]  Farid Melgani,et al.  Kernel ridge regression with active learning for wind speed prediction , 2013 .

[10]  Friedhelm Schwenker,et al.  Pattern classification and clustering: A review of partially supervised learning approaches , 2014, Pattern Recognit. Lett..

[11]  Trevor Hastie,et al.  An Introduction to Statistical Learning , 2013, Springer Texts in Statistics.

[12]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[13]  Mark Craven,et al.  Active Learning with Real Annotation Costs , 2008 .

[14]  M. Kubát An Introduction to Machine Learning , 2017, Springer International Publishing.

[15]  Mark Craven,et al.  An Analysis of Active Learning Strategies for Sequence Labeling Tasks , 2008, EMNLP.

[16]  Ken E. Whelan,et al.  The Automation of Science , 2009, Science.

[17]  Shaogang Gong,et al.  Stream-based joint exploration-exploitation active learning , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Mark Craven,et al.  Multiple-Instance Active Learning , 2007, NIPS.

[19]  Dragos D. Margineantu,et al.  Active Cost-Sensitive Learning , 2005, IJCAI.

[20]  Dana Angluin,et al.  Queries and concept learning , 1988, Machine Learning.

[21]  Francisco Herrera,et al.  A study on the use of statistical tests for experimentation with neural networks: Analysis of parametric test conditions and non-parametric tests , 2007, Expert Syst. Appl..

[22]  Brigham Anderson,et al.  Active learning for Hidden Markov Models: objective functions and algorithms , 2005, ICML.

[23]  Elisa Guerrero Vázquez,et al.  Repeated Measures Multiple Comparison Procedures Applied to Model Selection in Neural Networks , 2001, IWANN.

[24]  Francisco Herrera,et al.  A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms , 2011, Swarm Evol. Comput..

[25]  Jun Zhou,et al.  Maximizing Expected Model Change for Active Learning in Regression , 2013, 2013 IEEE 13th International Conference on Data Mining.

[26]  David A. Cohn,et al.  Neural Network Exploration Using Optimal Experiment Design , 1993, NIPS.

[27]  William A. Gale,et al.  A sequential algorithm for training text classifiers , 1994, SIGIR '94.

[28]  Thomas G. Dietterich Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms , 1998, Neural Computation.

[29]  Leonard G. C. Hamey,et al.  Minimisation of data collection by active learning , 1995, Proceedings of ICNN'95 - International Conference on Neural Networks.

[30]  Vladimir Cherkassky,et al.  The Nature Of Statistical Learning Theory , 1997, IEEE Trans. Neural Networks.

[31]  Ethem Alpaydın,et al.  Combined 5 x 2 cv F Test for Comparing Supervised Classification Learning Algorithms , 1999, Neural Comput..

[32]  Steven Salzberg,et al.  On Comparing Classifiers: Pitfalls to Avoid and a Recommended Approach , 1997, Data Mining and Knowledge Discovery.

[33]  Ross D. King,et al.  Active Learning for Regression Based on Query by Committee , 2007, IDEAL.

[34]  Wei Tang,et al.  Ensembling neural networks: Many could be better than all , 2002, Artif. Intell..

[35]  J. J. Higgins,et al.  The aligned rank transform for nonparametric factorial analyses using only anova procedures , 2011, CHI.

[36]  Christopher H. Bryant,et al.  Functional genomic hypothesis generation and experimentation by a robot scientist , 2004, Nature.

[37]  Rong Hu,et al.  Active Learning for Text Classification , 2011 .

[38]  David A. Cohn,et al.  Improving generalization with active learning , 1994, Machine Learning.

[39]  Tianshun Yao,et al.  Active Learning with Sampling by Uncertainty and Density for Word Sense Disambiguation and Text Classification , 2008, COLING.

[40]  R. Clemen Combining forecasts: A review and annotated bibliography , 1989 .

[41]  David Hinkley,et al.  Bootstrap Methods: Another Look at the Jackknife , 2008 .

[42]  Andrew McCallum,et al.  Toward Optimal Active Learning through Monte Carlo Estimation of Error Reduction , 2001, ICML 2001.

[43]  Aliza Sarlan,et al.  Twitter sentiment analysis , 2014, Proceedings of the 6th International Conference on Information Technology and Multimedia.

[44]  H. Sebastian Seung,et al.  Query by committee , 1992, COLT '92.

[45]  Maliha S. Nash,et al.  Handbook of Parametric and Nonparametric Statistical Procedures , 2001, Technometrics.

[46]  Burr Settles,et al.  Active Learning Literature Survey , 2009 .

[47]  David J. C. MacKay,et al.  Information-Based Objective Functions for Active Data Selection , 1992, Neural Computation.

[48]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..