A triangular spectral element method for elliptic and Stokes problems

Abstract In this paper, we study a triangular spectral-element method based on a one-to-one mapping between the rectangle and the triangle. We construct a new approximation space where the integral singularity brought by the mapping can be removed in a naive and stable way. We build aquasi-interpolation triangular spectral-element approximation, and analyze its approximation error. Based on this quasi-interpolation spectral-element approximation, we put forward a new triangular spectral-element method for the elliptic problems. We present the approximation scheme, analyze the convergence, and do some experiments to test the effectiveness. At last, we implement this triangular spectral-element method to solve the steady Stokes problem.

[1]  B. Guo,et al.  Petrov-Galerkin spectral element method for mixed inhomogeneous boundary value problems on polygons , 2010 .

[2]  Spencer J. Sherwin,et al.  A triangular spectral/hp discontinuous Galerkin method for modelling 2D shallow water equations , 2004 .

[3]  Ben-yu Guo,et al.  Pseudospectral method for quadrilaterals , 2011, J. Comput. Appl. Math..

[4]  Huiyuan Li,et al.  The triangular spectral element method for Stokes eigenvalues , 2017, Math. Comput..

[5]  Li-Lian Wang,et al.  A new triangular spectral element method I: implementation and analysis on a triangle , 2012, Numerical Algorithms.

[6]  Francesca Rapetti,et al.  Spectral Element Methods on Unstructured Meshes: Comparisons and Recent Advances , 2006, J. Sci. Comput..

[7]  Wilhelm Heinrichs Spectral Collocation on Triangular Elements , 1998 .

[8]  Yuan Xu,et al.  On Gauss-Lobatto Integration on the Triangle , 2010, SIAM J. Numer. Anal..

[9]  A Triangular Spectral Method for the Stokes Equations , 2011 .

[10]  Yuan Xu,et al.  Discrete Fourier Analysis, Cubature, and Interpolation on a Hexagon and a Triangle , 2007, SIAM J. Numer. Anal..

[11]  Zhimin Zhang POLYNOMIAL PRESERVING GRADIENT RECOVERY AND A POSTERIORI ESTIMATE FOR BILINEAR ELEMENT ON IRREGULAR QUADRILATERALS , 2004 .

[12]  Spectral schemes on triangular elements , 2001 .

[13]  Francis Loth,et al.  Spectral Element Methods for Transitional Flows in Complex Geometries , 2002, J. Sci. Comput..

[14]  George Em Karniadakis,et al.  A NEW TRIANGULAR AND TETRAHEDRAL BASIS FOR HIGH-ORDER (HP) FINITE ELEMENT METHODS , 1995 .

[15]  Ben-yu Guo,et al.  Error analysis of spectral method on a triangle , 2007, Adv. Comput. Math..

[16]  Ben-yu Guo,et al.  Spectral method on quadrilaterals , 2010, Math. Comput..

[17]  Lilian Wang,et al.  a new spectral method on triangles , 2011 .

[18]  Jie Shen,et al.  A Triangular Spectral Element Method Using Fully Tensorial Rational Basis Functions , 2009, SIAM J. Numer. Anal..

[19]  George Em Karniadakis,et al.  A triangular spectral element method; applications to the incompressible Navier-Stokes equations , 1995 .

[20]  Mark A. Taylor,et al.  An Algorithm for Computing Fekete Points in the Triangle , 2000, SIAM J. Numer. Anal..

[21]  Robert Michael Kirby,et al.  To CG or to HDG: A Comparative Study , 2012, J. Sci. Comput..

[22]  Jie Shen,et al.  Optimal error estimates in Jacobi-weighted Sobolev spaces for polynomial approximations on the triangle , 2010, Math. Comput..