Strain gradient crystal plasticity: size-dependentdeformation of bicrystals

Abstract The role of the grain boundary in influencing the deformation of a bicrystal isexplored using a rate-dependent crystal formulation of the Fleck–Hutchinson strain gradientplasticity theory. The physical basis of the theory is the elevated strengthening of a slip systemdue to geometrically necessary dislocations, associated with spatial gradients of slip. The theoryis implemented within the finite element framework and is used to study the deformation of abicrystal under in-plane shear loading. Contrary to classical scale-independent crystal plasticitytheories, the strain gradient theory predicts that the deformation state depends strongly upongrain size. Strain gradient effects are pronounced within a narrow layer at the grain boundary of abicrystal, and a significant grain-size dependence of the yield strength is predicted.

[1]  E. Hall,et al.  The Deformation and Ageing of Mild Steel , 1951 .

[2]  Hans Muhlhaus,et al.  Continuum models for materials with microstructure , 1995 .

[3]  N. Fleck,et al.  FINITE ELEMENTS FOR MATERIALS WITH STRAIN GRADIENT EFFECTS , 1999 .

[4]  J. Hutchinson,et al.  STEADY-STATE CRACK GROWTH AND WORK OF FRACTURE FOR SOLIDS CHARACTERIZED BY STRAIN GRADIENT PLASTICITY , 1997 .

[5]  A. Needleman,et al.  A tangent modulus method for rate dependent solids , 1984 .

[6]  E. Aifantis On the Microstructural Origin of Certain Inelastic Models , 1984 .

[7]  Norman A. Fleck,et al.  A phenomenological theory for strain gradient effects in plasticity , 1993 .

[8]  M. Ashby,et al.  Strain gradient plasticity: Theory and experiment , 1994 .

[9]  Georges Cailletaud,et al.  Strain localization in single crystals : bifurcation analysis, effects of boundaries and interfaces , 1995 .

[10]  van der Erik Giessen,et al.  Discrete dislocation plasticity: a simple planar model , 1995 .

[11]  M. Rashid,et al.  A constitutive algorithm for rate-dependent crystal plasticity , 1992 .

[12]  Alan Needleman,et al.  Material rate dependence and localized deformation in crystalline solids , 1983 .

[13]  Amit Acharya,et al.  On Non-Local Flow Theories that Preserve the Classical Structure of Incremental Boundary Value Problems , 1996 .

[14]  K. Kunze,et al.  Orientation imaging: The emergence of a new microscopy , 1993 .

[15]  Norman A. Fleck,et al.  The role of strain gradients in the grain size effect for polycrystals , 1996 .

[16]  N. Fleck,et al.  Strain gradient plasticity , 1997 .

[17]  R. D. Mindlin Micro-structure in linear elasticity , 1964 .

[18]  Bernhard Specht,et al.  Modified shape functions for the three‐node plate bending element passing the patch test , 1988 .

[19]  M. Ashby The deformation of plastically non-homogeneous materials , 1970 .

[20]  John W. Hutchinson,et al.  The mechanics of size-dependent indentation , 1998 .

[21]  John W. Hutchinson,et al.  Crack tip fields in strain gradient plasticity , 1996 .

[22]  N. Petch,et al.  The Cleavage Strength of Polycrystals , 1953 .

[23]  L. Kubin,et al.  Non linear phenomena in materials science , 1988 .

[24]  Norman A. Fleck,et al.  The prediction of a size effect in microindentation , 1998 .

[25]  E. Cosserat,et al.  Théorie des Corps déformables , 1909, Nature.

[26]  E. Hall,et al.  The Deformation and Ageing of Mild Steel: III Discussion of Results , 1951 .