MAVIS: system modelling and performance prediction

The MCAO Assisted Visible Imager and Spectrograph (MAVIS) Adaptive Optics Module has very demanding goals to support science in the optical: providing 15% SR in V band on a large FoV of 30arcsec diameter in standard atmospheric conditions at Paranal. It will be able to work in closed loop on up to three natural guide stars down to H=19, providing a sky coverage larger than 50% in the south galactic pole. Such goals and the exploration of a large MCAO system parameters space have required a combination of analytical and endto-end simulations to assess performance, sky coverage and drive the design. In this work we report baseline performance, statistical sky coverage and parameters sensitivity analysis done in the phase-A instrument study.

[1]  S. Esposito,et al.  PASSATA: object oriented numerical simulation software for adaptive optics , 2016, Astronomical Telescopes + Instrumentation.

[2]  Jean-Pierre Veran,et al.  Analytical model for Shack-Hartmann-based adaptive optics systems , 1998, Astronomical Telescopes and Instrumentation.

[3]  Francois Rigaut,et al.  Principles, limitations, and performance of multiconjugate adaptive optics , 2000, Astronomical Telescopes and Instrumentation.

[4]  Nicolas Doucet,et al.  Predictive learn and apply: MAVIS application - learn , 2020, Astronomical Telescopes + Instrumentation.

[5]  B. Ellerbroek,et al.  Split atmospheric tomography using laser and natural guide stars. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[6]  Roberto Ragazzoni,et al.  MAVIS: science case, imager, and spectrograph , 2020, Ground-based and Airborne Instrumentation for Astronomy VIII.

[7]  Nicolas Doucet,et al.  Predictive learn and apply: MAVIS application - apply , 2020, Astronomical Telescopes + Instrumentation.

[8]  M. Creze,et al.  Stellar populations in the milky way: a synthetic model. , 1986 .

[9]  Benoit Neichel,et al.  Natural guide-star processing for wide-field laser-assisted AO systems , 2016, Astronomical Telescopes + Instrumentation.

[10]  Enrico Pinna,et al.  Semianalytical error budget for adaptive optics systems with pyramid wavefront sensors , 2019, Journal of Astronomical Telescopes, Instruments, and Systems.

[11]  L M Mugnier,et al.  Optimal wave-front reconstruction strategies for multiconjugate adaptive optics. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[12]  J. Conan,et al.  Tomographic reconstruction for wide-field adaptive optics systems: Fourier domain analysis and fundamental limitations. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[13]  Richard J. Sasiela,et al.  Wave-front correction by one or more synthetic beacons , 1994 .

[14]  Francois Rigaut,et al.  MAVIS: the adaptive optics module feasibility study , 2020, Astronomical Telescopes + Instrumentation.

[15]  Paul Hickson,et al.  High resolution mesospheric sodium properties for adaptive optics applications , 2014 .

[16]  Hao Zhang,et al.  MAVIS conceptual design , 2020, Ground-based and Airborne Instrumentation for Astronomy VIII.

[17]  F. Derie,et al.  Optical turbulence profiling with stereo-SCIDAR for VLT and ELT. , 2018, 1806.02585.

[18]  Brent L. Ellerbroek,et al.  Simulations of closed-loop wavefront reconstruction for multiconjugate adaptive optics on giant telescopes , 2003, SPIE Optics + Photonics.

[19]  Roberto Biasi,et al.  The deformable secondary mirror of VLT: final electro-mechanical and optical acceptance test results , 2014, Astronomical Telescopes and Instrumentation.

[20]  Sylvain Oberti,et al.  Adaptive optics design status of MAORY, the MCAO system of European ELT , 2019 .

[21]  S. Esposito,et al.  Infinite impulse response modal filtering in visible adaptive optics , 2012, Other Conferences.