Revisiting Modified Greedy Algorithm for Monotone Submodular Maximization with a Knapsack Constraint

Monotone submodular maximization with a knapsack constraint is NP-hard. Various approximation algorithms have been devised to address this optimization problem. In this paper, we revisit the widely known modified greedy algorithm. First, we show that this algorithm can achieve an approximation factor of $0.405$, which significantly improves the known factor of $0.357$ given by Wolsey or $(1-1/\mathrm{e})/2\approx 0.316$ given by Khuller et al. More importantly, our analysis uncovers a gap in Khuller et al.'s proof for the extensively mentioned approximation factor of $(1-1/\sqrt{\mathrm{e}})\approx 0.393$ in the literature to clarify a long time of misunderstanding on this issue. Second, we enhance the modified greedy algorithm to derive a data-dependent upper bound on the optimum. We empirically demonstrate the tightness of our upper bound with a real-world application. The bound enables us to obtain a data-dependent ratio typically much higher than $0.405$ between the solution value of the modified greedy algorithm and the optimum. It can also be used to significantly improve the efficiency of algorithms such as branch and bound.

[1]  Jan Vondrák,et al.  Optimal approximation for submodular and supermodular optimization with bounded curvature , 2013, SODA.

[2]  L. Wolsey Maximising Real-Valued Submodular Functions: Primal and Dual Heuristics for Location Problems , 1982, Math. Oper. Res..

[3]  Huy L. Nguyen,et al.  A Nearly-linear Time Algorithm for Submodular Maximization with a Knapsack Constraint , 2019, ICALP.

[4]  Samir Khuller,et al.  The Budgeted Maximum Coverage Problem , 1999, Inf. Process. Lett..

[5]  Gérard Cornuéjols,et al.  Submodular set functions, matroids and the greedy algorithm: Tight worst-case bounds and some generalizations of the Rado-Edmonds theorem , 1984, Discret. Appl. Math..

[6]  Takuya Akiba,et al.  Fast and Accurate Influence Maximization on Large Networks with Pruned Monte-Carlo Simulations , 2014, AAAI.

[7]  Andreas Krause,et al.  Near-optimal Observation Selection using Submodular Functions , 2007, AAAI.

[8]  Ping Zhang,et al.  Trajectory-driven Influential Billboard Placement , 2018, KDD.

[9]  Andreas Krause,et al.  Efficient Sensor Placement Optimization for Securing Large Water Distribution Networks , 2008 .

[10]  Andreas Krause,et al.  Near-optimal Nonmyopic Value of Information in Graphical Models , 2005, UAI.

[11]  Hui Lin,et al.  A Class of Submodular Functions for Document Summarization , 2011, ACL.

[12]  Jan Vondrák,et al.  Maximizing a Monotone Submodular Function Subject to a Matroid Constraint , 2011, SIAM J. Comput..

[13]  Olga Veksler,et al.  Minimizing Sparse High-Order Energies by Submodular Vertex-Cover , 2012, NIPS.

[14]  Yuichi Yoshida,et al.  Maximizing a Monotone Submodular Function with a Bounded Curvature under a Knapsack Constraint , 2016, SIAM J. Discret. Math..

[15]  George L. Nemhauser,et al.  Note--On "Location of Bank Accounts to Optimize Float: An Analytic Study of Exact and Approximate Algorithms" , 1979 .

[16]  Uriel Feige,et al.  Approximating the value of two power proof systems, with applications to MAX 2SAT and MAX DICUT , 1995, Proceedings Third Israel Symposium on the Theory of Computing and Systems.

[17]  Laurence A. Wolsey,et al.  Best Algorithms for Approximating the Maximum of a Submodular Set Function , 1978, Math. Oper. Res..

[18]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[19]  Manuel Blum,et al.  Time Bounds for Selection , 1973, J. Comput. Syst. Sci..

[20]  Éva Tardos,et al.  Maximizing the Spread of Influence through a Social Network , 2015, Theory Comput..

[21]  Dacheng Tao,et al.  Submodular Asymmetric Feature Selection in Cascade Object Detection , 2016, AAAI.

[22]  G. A. Tijssen,et al.  The Data-Correcting Algorithm for the Minimization of Supermodular Functions , 1999 .

[23]  Maxim Sviridenko,et al.  A note on maximizing a submodular set function subject to a knapsack constraint , 2004, Oper. Res. Lett..

[24]  Hui Lin,et al.  Multi-document Summarization via Budgeted Maximization of Submodular Functions , 2010, NAACL.

[25]  Andreas Krause,et al.  Cost-effective outbreak detection in networks , 2007, KDD '07.

[26]  G. Nemhauser,et al.  Exceptional Paper—Location of Bank Accounts to Optimize Float: An Analytic Study of Exact and Approximate Algorithms , 1977 .

[27]  Maxim Sviridenko,et al.  An 0.828-approximation Algorithm for the Uncapacitated Facility Location Problem , 1999, Discret. Appl. Math..

[28]  Hosung Park,et al.  What is Twitter, a social network or a news media? , 2010, WWW '10.

[29]  Jeff A. Bilmes,et al.  Submodularity beyond submodular energies: Coupling edges in graph cuts , 2011, CVPR 2011.

[30]  Rishabh K. Iyer,et al.  Submodularity in Data Subset Selection and Active Learning , 2015, ICML.

[31]  Andreas Krause,et al.  Near-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies , 2008, J. Mach. Learn. Res..

[32]  Jan Vondrák,et al.  Fast algorithms for maximizing submodular functions , 2014, SODA.

[33]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[34]  Jure Leskovec,et al.  {SNAP Datasets}: {Stanford} Large Network Dataset Collection , 2014 .