TRENDS AND OPPORTUNITIES IN DIRECT-ABSORPTION SOLAR THERMAL COLLECTORS

Efficient conversion of sunlight into useful heat or work is of increasing global interest. Solar-to-thermal energy conversion, as opposed to solar-to-electricity, is enabled by solar thermal collectors that convert sunlight into heat at some useful temperature. We review here recent developments in solar thermal energy conversion. Our emphasis is on “direct-absorption” solar thermal collectors, in which incident sunlight is absorbed directly by a working fluid. This contrasts with more common conventional solar thermal collectors where the sunlight strikes and is absorbed by a solid receiver, which then transfers heat to the working fluid. Both liquid-based and gas-based direct-absorption collectors are described, although liquid-based systems are emphasized. We propose that if ‘direct-absorption’ technologies could be developed further, it would open up a number of emerging opportunities, including applications exploiting thermochemical and photocatalytic reactions and direct absorption of a binary fluid for absorption refrigeration.

[1]  K.,et al.  High temperature properties and decomposition of inorganic salts :: part 1. sulfates , 1966 .

[2]  M. Pinar Mengüç,et al.  Thermal Radiation Heat Transfer , 2020 .

[3]  Kurt H. Stern,et al.  High Temperature Properties and Decomposition of Inorganic Salts Part 3, Nitrates and Nitrites , 1972 .

[4]  William D. Drotning,et al.  Optical properties of solar-absorbing oxide particles suspended in a molten salt heat transfer fluid☆ , 1978 .

[5]  Arlon J. Hunt,et al.  A NEW SOLAR THERMAL RECEIVER UTILIZING A SMALL PARTICLE HEAT EXCHANGER , 1979 .

[6]  P. Suter,et al.  Study of solid-gas-suspensions used for direct absorption of concentrated solar radiation , 1979 .

[7]  W. Beckman,et al.  Solar Engineering of Thermal Processes , 1985 .

[8]  S. Blunden,et al.  The environmental degradation of organotin compounds — A review , 1982 .

[9]  D. Lovering Molten Salt Technology , 1982 .

[10]  N. Arai,et al.  Collection of thermal radiation by a semitransparent fluid layer flowing in an open channel , 1982 .

[11]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[12]  B. W. Webb,et al.  Analysis of Heat Transfer and Solar Radiation Absorption in an Irradiated Thin, Falling Molten Salt Film , 1985 .

[13]  J. W. Griffin,et al.  Optical properties of solid particle receiver materials: I. Angular scattering and extinction characteristics of Norton Masterbeads® , 1986 .

[14]  J. Frazao,et al.  On the design and development of a new BTA tool to increase productivity and workpiece accuracy in deep hole machining , 1986 .

[15]  Paul Schissel,et al.  Optical properties of high-temperature materials for direct absorption receivers , 1986 .

[16]  M. Bohn Experimental investigation of the direct absorption receiver concept , 1987 .

[17]  C. Tien Thermal Radiation in Packed and Fluidized Beds , 1988 .

[18]  M. Geyer,et al.  Testing an external sodium receiver up to heat fluxes of 2.5 MW/m2: Results and conclusions from the IEA-SSPS high flux experiment conducted at the central receiver system of the Plataforma Solar de Almeria (Spain) , 1988 .

[19]  M. S. Bohn,et al.  Experiments and Analysis on the Molten Salt Direct Absorption Receiver Concept , 1988 .

[20]  Mark S. Bohn,et al.  Heat transfer in molten salt direct absorption receivers , 1989 .

[21]  Y. Çengel,et al.  Thermodynamics : An Engineering Approach , 1989 .

[22]  Sunil Kumar,et al.  Analysis of Combined Radiation and Convection in a Particulate-Laden Liquid Film , 1990 .

[23]  Richard B. Diver,et al.  United States Department of Energy solar receiver technology development , 1990 .

[24]  Sunil Kumar,et al.  Dependent absorption and extinction of radiation by small particles , 1990 .

[25]  A. Cassano Potential applications of concentrated solar photons , 1992 .

[26]  C. Sasse,et al.  The role of the optical properties of solids in solar direct absorption process , 1993 .

[27]  Fletcher Miller,et al.  Thermal Modelling of Small Particle Solar Central Receiver , 2000 .

[28]  Aldo Steinfeld,et al.  Optimum aperture size and operating temperature of a solar cavity-receiver , 1993 .

[29]  L. Leibowitz,et al.  Thermodynamic and transport properties of sodium liquid and vapor , 1995 .

[30]  Abraham Kribus,et al.  The “Porcupine”: A Novel High-Flux Absorber for Volumetric Solar Receivers , 1998 .

[31]  Naomi J. Halas,et al.  Linear optical properties of gold nanoshells , 1999 .

[32]  R. Amal,et al.  Role of Nanoparticles in Photocatalysis , 1999 .

[33]  Sushil K. Chaturvedi,et al.  Thermodynamic analysis of two-component, two-phase flow in solar collectors with application to a direct-expansion solar-assisted heat pump , 1999 .

[34]  A. Morawski,et al.  Photocatalytic decomposition of oil in water , 2000 .

[35]  R. Amal,et al.  Novel Photocatalyst: Titania-Coated Magnetite. Activity and Photodissolution , 2000 .

[36]  Akira Fujishima,et al.  Titanium dioxide photocatalysis , 2000 .

[37]  C. Estrada,et al.  Radiation absorption and rate constants for carbaryl photocatalytic degradation in a solar collector , 2002 .

[38]  Wilson F. Jardim,et al.  Photocatalytic decomposition of seawater-soluble crude-oil fractions using high surface area colloid nanoparticles of TiO2 , 2002 .

[39]  R. Amal,et al.  Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles , 2002 .

[40]  Reed J. Jensen,et al.  Direct Solar Reduction of CO2 to Fuel: First Prototype Results , 2002 .

[41]  Abraham Kribus,et al.  Experimentally determined optical properties of a polydisperse carbon black cloud for a solar particle receiver , 2004 .

[42]  Aldo Steinfeld,et al.  Solar hydrogen production by thermal decomposition of natural gas using a vortex-flow reactor , 2004 .

[43]  A. Steinfeld Solar thermochemical production of hydrogen--a review , 2005 .

[44]  J. Hughes,et al.  Designing Pd-on-Au bimetallic nanoparticle catalysts for trichloroethene hydrodechlorination. , 2005, Environmental science & technology.

[45]  A. Savvatimskiy,et al.  Measurements of the melting point of graphite and the properties of liquid carbon (a review for 1963–2003) , 2005 .

[46]  A. Faghri,et al.  Challenges and opportunities of thermal management issues related to fuel cell technology and modeling , 2005 .

[47]  A. Maldonado,et al.  Physical properties of ZnO:F obtained from a fresh and aged solution of zinc acetate and zinc acetylacetonate , 2006 .

[48]  Anton Meier,et al.  A Receiver-Reactor for the Solar Thermal Dissociation of Zinc , 2007 .

[49]  Yu-ran Luo,et al.  Comprehensive handbook of chemical bond energies , 2007 .

[50]  S. Kim,et al.  Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux , 2007 .

[51]  R. Prasher Thermal radiation in dense nano- and microparticulate media , 2007 .

[52]  V. Carey Liquid-Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment, Third Edition , 2020 .

[53]  O. García-Valladares,et al.  Two-phase flow modelling of a solar concentrator applied as ammonia vapor generator in an absorption refrigerator , 2008 .

[54]  M. Matsumoto,et al.  Nano bubble—Size dependence of surface tension and inside pressure , 2008 .

[55]  Dongsheng Wen,et al.  Mechanisms of thermal nanofluids on enhanced critical heat flux (CHF) , 2008 .

[56]  B. Yang,et al.  Thermophysical characteristics of water-in-FC72 nanoemulsion fluids , 2008 .

[57]  N. Siegel,et al.  MOLTEN NITRATE SALT DEVELOPMENT FOR THERMAL ENERGY STORAGE IN PARABOLIC TROUGH SOLAR POWER SYSTEMS , 2008 .

[58]  C. A. Infante Ferreira,et al.  Solar refrigeration options – a state-of-the-art review , 2008 .

[59]  A. Steinfeld,et al.  Experimental investigation of a packed-bed solar reactor for the steam-gasification of carbonaceous feedstocks , 2009 .

[60]  J. Golden,et al.  Optical properties of liquids for direct absorption solar thermal energy systems , 2009 .

[61]  Aldo Steinfeld,et al.  Solar thermal cracking of methane in a particle-flow reactor for the co-production of hydrogen and carbon , 2009 .

[62]  J. R. Adleman,et al.  Heterogenous catalysis mediated by plasmon heating. , 2009, Nano letters.

[63]  Pawel Keblinski,et al.  Critical heat flux around strongly heated nanoparticles. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[64]  Patrick E. Phelan,et al.  Pool boiling of nanofluids: Comprehensive review of existing data and limited new data , 2009 .

[65]  R. Adrian,et al.  Vapor generation in a nanoparticle liquid suspension using a focused, continuous laser , 2009 .

[66]  Todd Otanicar,et al.  IMPACT OF SIZE AND SCATTERING MODE ON THE OPTIMAL SOLAR ABSORBING NANOFLUID , 2009 .

[67]  Wojciech Lipiński,et al.  Particle–gas reacting flow under concentrated solar irradiation , 2009 .

[68]  H. Tyagi,et al.  Predicted Efficiency of a Low-Temperature Nanofluid-Based Direct Absorption Solar Collector , 2009 .

[69]  Jacopo Buongiorno,et al.  Experimental Study of Flow Critical Heat Flux in Alumina-Water, Zinc-Oxide-Water, and Diamond-Water Nanofluids , 2009 .

[70]  Todd Phillip Otanicar,et al.  Direct absorption solar thermal collectors utilizing liquid-nanoparticle suspensions , 2009 .

[71]  A. Steinfeld,et al.  Modeling of a Multitube High-Temperature Solar Thermochemical Reactor for Hydrogen Production , 2009 .

[72]  Todd P Otanicar,et al.  Comparative environmental and economic analysis of conventional and nanofluid solar hot water technologies. , 2009, Environmental science & technology.

[73]  Craig A. Grimes,et al.  High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. , 2009, Nano letters.

[74]  Elumalai Natarajan,et al.  Role of nanofluids in solar water heater , 2009 .

[75]  E. Sani,et al.  Carbon nanohorns-based nanofluids as direct sunlight absorbers. , 2010, Optics express.

[76]  Jacopo Buongiorno,et al.  Modification of sandblasted plate heaters using nanofluids to enhance pool boiling critical heat flux , 2010 .

[77]  Ho Seon Ahn,et al.  On the Mechanism of Pool Boiling Critical Heat Flux Enhancement in Nanofluids , 2010 .

[78]  Somnath C. Roy,et al.  Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. , 2010, ACS nano.

[79]  R. Reddy,et al.  Critical heat flux enhancement in pool boiling using alumina nanofluids , 2010 .

[80]  Yong Tae Kang,et al.  The effects of nanoparticles on absorption heat and mass transfer performance in NH3/H2O binary nanofluids , 2010 .

[81]  M. Kenisarin High-temperature phase change materials for thermal energy storage , 2010 .

[82]  W. Chueh,et al.  High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria , 2010, Science.

[83]  G. Morrison,et al.  A Microsolar Collector for Hydrogen Production by Methanol Reforming , 2010 .

[84]  In Cheol Bang,et al.  Effects of nanofluids containing graphene/graphene-oxide nanosheets on critical heat flux , 2010 .

[85]  Robert A. Taylor,et al.  Nanofluid-based direct absorption solar collector , 2010 .

[86]  Y. A. Çengel,et al.  Thermodynamics: An Engineering Approach (6th Edition (SI Units), revised edition for TU Delft) , 2010 .

[87]  S. Cronin,et al.  Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. , 2011, Nano letters.

[88]  Daxiong Wu,et al.  Thermal properties of carbon black aqueous nanofluids for solar absorption , 2011, Nanoscale research letters.

[89]  A. Hunt SMALL PARTICLE HEAT EXCHANGERS , 2011 .

[90]  Todd Otanicar,et al.  Band-Gap Tuned Direct Absorption for a Hybrid Concentrating Solar Photovoltaic/Thermal System , 2011 .

[91]  Thomas Huld,et al.  Renewable Energy Sources and Climate Change Mitigation: Direct Solar Energy , 2011 .

[92]  Spatially Varying Extinction Coefficient for Direct Absorption Solar Thermal Collector Optimization , 2011 .

[93]  K. Hanamura,et al.  Enhancement of solar radiation absorption using nanoparticle suspension , 2011 .

[94]  Danièle Revel,et al.  IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation , 2011 .

[95]  F. Martelli,et al.  Absorption and scattering properties of carbon nanohorn-based nanofluids for direct sunlight absorbers , 2011, Nanoscale research letters.

[96]  Alexander Mitsos,et al.  Concentrated solar power on demand , 2011 .

[97]  Lin Lu,et al.  Thermal performance of an open thermosyphon using nanofluids for high-temperature evacuated tubular solar collectors: Part 1: Indoor experiment , 2011 .

[98]  Robert A. Taylor,et al.  Nanofluid optical property characterization: towards efficient direct absorption solar collectors , 2011, Nanoscale research letters.

[99]  F. Martelli,et al.  Optical characterisation of Carbon-Nanohorn based nanofluids for solar energy and life science applications , 2011, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).

[100]  S. Linic,et al.  Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. , 2011, Nature materials.

[101]  E. Sani,et al.  Potential of carbon nanohorn-based suspensions for solar thermal collectors , 2011 .

[102]  Robert A. Taylor,et al.  Applicability of nanofluids in high flux solar collectors , 2011 .

[103]  E. Wang,et al.  Optimization of nanofluid volumetric receivers for solar thermal energy conversion , 2011 .

[104]  Evan L. Runnerstrom,et al.  Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals. , 2011, Nano letters.

[105]  H. Jakobsen,et al.  Engineering TiO2 nanomaterials for CO2 conversion/solar fuels , 2012 .

[106]  Todd Otanicar,et al.  Socioeconomic impacts of heat transfer research , 2012 .

[107]  Todd Otanicar,et al.  Prospects for solar cooling – An economic and environmental assessment , 2012 .

[108]  T. Yousefi,et al.  An experimental investigation on the effect of pH variation of MWCNT–H2O nanofluid on the efficiency of a flat-plate solar collector , 2012 .

[109]  Weidong Wu,et al.  Mass transfer enhancement by binary nanofluids (NH3/H2O + Ag nanoparticles) for bubble absorption process , 2012 .

[110]  E. Wang,et al.  Analytical model for the design of volumetric solar flow receivers , 2012 .

[111]  Todd Otanicar,et al.  Solar Energy Harvesting Using Nanofluids-Based Concentrating Solar Collector , 2012 .

[112]  Robert A. Taylor,et al.  Characterization of light-induced, volumetric steam generation in nanofluids , 2012 .

[113]  Robert A. Taylor,et al.  Nanofluid-based optical filter optimization for PV/T systems , 2012, Light: Science & Applications.

[114]  M. El-Sayed,et al.  Some recent developments in photoelectrochemical water splitting using nanostructured TiO2: a short review , 2012, Theoretical Chemistry Accounts.

[115]  Peng Wang,et al.  Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles. , 2012, Physical chemistry chemical physics : PCCP.

[116]  M. Fernández-García,et al.  Advanced nanoarchitectures for solar photocatalytic applications. , 2012, Chemical reviews.

[117]  Robert A. Taylor,et al.  Liquid sodium versus Hitec as a heat transfer fluid in solar thermal central receiver systems , 2012 .

[118]  H. Tyagi,et al.  A study on environmental impact of nanofluid-based concentrating solar water heating system , 2012 .

[119]  M. Hasanuzzaman,et al.  Evaluation of the effect of nanofluid-based absorbers on direct solar collector , 2012 .

[120]  T. Yousefi,et al.  An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors , 2012 .

[121]  Robert A. Taylor,et al.  Surface Plasmon Resonance Shifts of a Dispersion of Core-Shell Nanoparticles for Efficient Solar Absorption , 2012 .

[122]  Robert A. Taylor,et al.  Small particles, big impacts: A review of the diverse applications of nanofluids , 2013 .

[123]  Robert A. Taylor,et al.  Feasibility of nanofluid-based optical filters. , 2013, Applied optics.