Synthesis and electrospray mass spectrometry determination of thiolate-protected Au55(SR)31 nanoclusters.

Since the pioneering work of Schmid et al. on phosphine-capped Au(55) clusters, the search for thiolated Au(55) has long been of major interest. This work reports the synthesis and electrospray ionization mass spectrometry (ESI-MS) evidence of Au(55)(SCH(2)CH(2)Ph)(31) clusters.

[1]  J. Pettibone,et al.  Gold cluster formation with phosphine ligands: etching as a size-selective synthetic pathway for small clusters? , 2011, ACS nano.

[2]  Thomas Bürgi,et al.  Ligand exchange reactions on Au(38) and Au(40) clusters: a combined circular dichroism and mass spectrometry study. , 2010, Journal of the American Chemical Society.

[3]  R. Jin,et al.  Size focusing: a methodology for synthesizing atomically precise gold nanoclusters , 2010 .

[4]  J. Limtrakul,et al.  MALDI Mass Analysis of 11 kDa Gold Clusters Protected by Octadecanethiolate Ligands , 2010 .

[5]  Y. Negishi,et al.  Continuous modulation of electronic structure of stable thiolate-protected Au25 cluster by Ag doping. , 2010, Chemical communications.

[6]  R. Jin,et al.  Total structure determination of thiolate-protected Au38 nanoparticles. , 2010, Journal of the American Chemical Society.

[7]  O. Lopez-Acevedo,et al.  Chirality and electronic structure of the thiolate-protected Au38 nanocluster. , 2010, Journal of the American Chemical Society.

[8]  R. Jin,et al.  Isolation of ubiquitous Au(40)(SR)(24) clusters from the 8 kDa gold clusters. , 2010, Journal of the American Chemical Society.

[9]  R. Jin,et al.  Thiolate-Protected Au24(SC2H4Ph)20 Nanoclusters: Superatoms or Not? , 2010 .

[10]  Jia Li,et al.  Phosphane-stabilized gold clusters: investigation of the stability of [Au13(PMe2Ph)10Cl2]3+ , 2010, Journal of molecular modeling.

[11]  X. Zeng,et al.  Icosahedral crown gold nanocluster au(43)cu(12) with high catalytic activity. , 2010, Nano letters.

[12]  R. Jin,et al.  Atomically precise Au25(SR)18 nanoparticles as catalysts for the selective hydrogenation of alpha,beta-unsaturated ketones and aldehydes. , 2010, Angewandte Chemie.

[13]  N. Kalkkinen,et al.  Solvent Dependent Stability of Monolayer Protected Au38 Clusters , 2010 .

[14]  R. Jin,et al.  Size-focusing synthesis, optical and electrochemical properties of monodisperse Au38(SC2H4Ph)24 nanoclusters. , 2009, ACS nano.

[15]  R. Jin,et al.  Controlling nanoparticles with atomic precision: the case of Au144(SCH2CH2Ph)60. , 2009, Nano letters.

[16]  A. Dass Mass spectrometric identification of Au68(SR)34 molecular gold nanoclusters with 34-electron shell closing. , 2009, Journal of the American Chemical Society.

[17]  R. Jin,et al.  Thiolate-protected Au(20) clusters with a large energy gap of 2.1 eV. , 2009, Journal of the American Chemical Society.

[18]  Thomas Bürgi,et al.  Chiral gold nanoparticles. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[19]  S. Dai,et al.  From superatomic Au25(SR)18(-) to superatomic M@Au24(SR)18(q) core-shell clusters. , 2009, Inorganic chemistry.

[20]  R. Jin,et al.  Conversion of Anionic [Au25(SCH2CH2Ph)18]− Cluster to Charge Neutral Cluster via Air Oxidation , 2008 .

[21]  C. Femoni,et al.  An organometallic approach to gold nanoparticles: synthesis and X-ray structure of CO-protected Au21Fe10, Au22Fe12, Au28Fe14, and Au34Fe14 clusters. , 2008, Angewandte Chemie.

[22]  G. Schmid The relevance of shape and size of Au55 clusters. , 2008, Chemical Society reviews.

[23]  T. Pradeep,et al.  Ligand Exchange of Au25SG18 Leading to Functionalized Gold Clusters: Spectroscopy, Kinetics, and Luminescence , 2008 .

[24]  R. Jin,et al.  Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. , 2008, Journal of the American Chemical Society.

[25]  R. Murray,et al.  Nanoparticle MALDI-TOF mass spectrometry without fragmentation: Au25(SCH2CH2Ph)18 and mixed monolayer Au25(SCH2CH2Ph)(18-x)(L)(x). , 2008, Journal of the American Chemical Society.

[26]  M. Jansen,et al.  Intercluster compounds consisting of gold clusters and fullerides: [Au7(PPh3)7]C60 x THF and [Au8(PPh3)8](C60)2. , 2008, Angewandte Chemie.

[27]  R. Jin,et al.  Kinetically controlled, high-yield synthesis of Au25 clusters. , 2008, Journal of the American Chemical Society.

[28]  Joseph F. Parker,et al.  Electrospray ionization mass spectrometry of uniform and mixed monolayer nanoparticles: Au25[S(CH2)2Ph]18 and Au25[S(CH2)2Ph]18-x(SR)x. , 2007, Journal of the American Chemical Society.

[29]  K. Al‐Shamery,et al.  Formation of alkanethiolate-protected gold clusters with unprecedented core sizes in the thiolation of polymer-stabilized gold clusters , 2007 .

[30]  M. Jansen,et al.  Supramolecular Intercluster Compounds Consisting of Gold Clusters and Keggin Anions , 2006 .

[31]  M. Kappes,et al.  The phosphine-stabilized gold-arsenic clusters [Au19(AsnPr)8(dppe)6]Cl3, [Au10(AsnPr)4(dppe)4]Cl2, [Au17(AsnPr)6(As2nPr2)(dppm)6]Cl3, and [Au10(AsPh)4(dppe)4]Cl2: synthesis, characterization, and DFT calculations. , 2006, Angewandte Chemie.

[32]  Y. Negishi,et al.  Chromatographic isolation of "missing" Au55 clusters protected by alkanethiolates. , 2006, Journal of the American Chemical Society.

[33]  L. F. Dahl,et al.  Synthesis and structural analysis of the first nanosized platinum-gold carbonyl/phosphine cluster, Pt13[Au2(PPh3)2]2(CO)10(PPh3)4, containing a Pt-centered [Ph3PAu-AuPPh3]-capped icosahedral Pt12 cage. , 2005, Inorganic chemistry.

[34]  Katsuyuki Nobusada,et al.  Glutathione-protected gold clusters revisited: bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. , 2005, Journal of the American Chemical Society.

[35]  U. Simon,et al.  Gold nanoparticles: assembly and electrical properties in 1-3 dimensions. , 2005, Chemical Communications.

[36]  A. Schmid,et al.  Template Guided Self-Assembly of [Au55] Clusters on Nanolithographically Defined Monolayer Patterns , 2002 .

[37]  Robert L. Whetten,et al.  Controlled Etching of Au:SR Cluster Compounds , 1999 .

[38]  Robert L. Whetten,et al.  Isolation and Selected Properties of a 10.4 kDa Gold:Glutathione Cluster Compound , 1998 .

[39]  L. Chi,et al.  Metal Clusters and Colloids , 1998 .

[40]  E. Weckert,et al.  Synthesis and structural characterization of an AI77 cluster , 1997, Nature.

[41]  U. Kreibig,et al.  The optical extinction of ligand-stabilized Au13- and Au55-clusters: The vanishing of the Mie-resonance , 1993 .

[42]  Hiroshi Sano,et al.  Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below 0 °C , 1987 .

[43]  G. Schmid Developments in transition metal cluster chemistry — The way to large clusters , 1985 .

[44]  R. Boese,et al.  Au55[P(C6H5)3]12CI6 — ein Goldcluster ungewöhnlicher Größe , 1981 .