Rectilinear approximation and volume estimates for hereditary bodies via [0,1]-decorated containers

We use the hypergraph container theory of Balogh–Morris–Samotij and Saxton–Thomason to obtain general rectilinear approximations and volume estimates for sequences of bodies closed under certain families of projections. We give a number of applications of our results, including a multicolour generalisation of a theorem of Hatami, Janson and Szegedy on the entropy of graph limits. Finally, we raise a number of questions on geometric and analytic approaches to containers.

[1]  David J. Galvin,et al.  Three tutorial lectures on entropy and counting , 2014, 1406.7872.

[2]  Wojciech Samotij,et al.  THE METHOD OF HYPERGRAPH CONTAINERS , 2018, Proceedings of the International Congress of Mathematicians (ICM 2018).

[3]  Svante Janson,et al.  Graph properties, graph limits, and entropy , 2013, J. Graph Theory.

[4]  B. Szegedy,et al.  Szemerédi’s Lemma for the Analyst , 2007 .

[5]  Noga Alon,et al.  The structure of almost all graphs in a hereditary property , 2009, J. Comb. Theory B.

[6]  Victor Falgas-Ravry,et al.  Multicolor containers, extremal entropy, and counting , 2018, Random Struct. Algorithms.

[7]  Bal'azs Szegedy,et al.  Limits of compact decorated graphs , 2010, 1010.5155.

[8]  Dhruv Mubayi,et al.  An Extremal Graph Problem with a Transcendental Solution , 2016, Combinatorics, Probability and Computing.

[9]  Victor Falgas-Ravry,et al.  Multicolour containers and the entropy of decorated graph limits , 2016, 1607.08152.

[10]  Gábor Tardos,et al.  Excluded permutation matrices and the Stanley-Wilf conjecture , 2004, J. Comb. Theory, Ser. A.

[11]  Alan M. Frieze,et al.  Quick Approximation to Matrices and Applications , 1999, Comb..

[12]  Béla Bollobás,et al.  Hereditary and Monotone Properties of Graphs , 2013, The Mathematics of Paul Erdős II.

[13]  V. Sós,et al.  Convergent Sequences of Dense Graphs I: Subgraph Frequencies, Metric Properties and Testing , 2007, math/0702004.

[14]  Bal'azs Szegedy,et al.  Multigraph limits, unbounded kernels, and Banach space decorated graphs , 2021, Journal of Functional Analysis.

[15]  Peter Nelson,et al.  Typical structure of hereditary properties of binary matroids , 2021 .

[16]  Dhruv Mubayi,et al.  Extremal Theory of Locally Sparse Multigraphs , 2016, SIAM J. Discret. Math..

[17]  alcun K. grafo ASYMPTOTIC ENUMERATION OF Kn-FREE GRAPHS , 2004 .

[18]  M. Bálek,et al.  Large Networks and Graph Limits , 2022 .

[19]  B. Bollobás,et al.  Projections of Bodies and Hereditary Properties of Hypergraphs , 1995 .

[20]  D. Saxton,et al.  Hypergraph containers , 2012, 1204.6595.

[22]  V. E. Alekseev On the entropy values of hereditary classes of graphs , 1993 .

[23]  W. T. Gowers,et al.  Combinatorial theorems in sparse random sets , 2010, 1011.4310.

[24]  Wojciech Samotij,et al.  What does a typical metric space look like? , 2021 .

[25]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[26]  Victor Falgas-Ravry,et al.  Extremal problems for multigraphs , 2022, Journal of Combinatorial Theory, Series B.

[27]  M. Schacht Extremal results for random discrete structures , 2016, 1603.00894.

[28]  Dhruv Mubayi,et al.  DISCRETE METRIC SPACES: STRUCTURE, ENUMERATION, AND 0-1 LAWS , 2015, The Journal of Symbolic Logic.

[29]  Victor Falgas-Ravry On an extremal problem for locally sparse multigraphs , 2021 .

[30]  M. Wren Wagner , 1977 .

[31]  Andrew Thomason,et al.  Simple Containers for Simple Hypergraphs , 2014, Combinatorics, Probability and Computing.

[32]  D. Conlon Combinatorial theorems relative to a random set , 2014, 1404.3324.

[33]  Alexandr V. Kostochka,et al.  On independent sets in hypergraphs , 2011, Random Struct. Algorithms.

[34]  Klas Markström,et al.  Existence thresholds and Ramsey properties of random posets , 2020, Random Struct. Algorithms.