Inverse problem in hydrogeology

The state of the groundwater inverse problem is synthesized. Emphasis is placed on aquifer characterization, where modelers have to deal with conceptual model uncertainty (notably spatial and temporal variability), scale dependence, many types of unknown parameters (transmissivity, recharge, boundary conditions, etc.), nonlinearity, and often low sensitivity of state variables (typically heads and concentrations) to aquifer properties. Because of these difficulties, calibration cannot be separated from the modeling process, as it is sometimes done in other fields. Instead, it should be viewed as one step in the process of understanding aquifer behavior. In fact, it is shown that actual parameter estimation methods do not differ from each other in the essence, though they may differ in the computational details. It is argued that there is ample room for improvement in groundwater inversion: development of user-friendly codes, accommodation of variability through geostatistics, incorporation of geological information and different types of data (temperature, occurrence and concentration of isotopes, age, etc.), proper accounting of uncertainty, etc. Despite this, even with existing codes, automatic calibration facilitates enormously the task of modeling. Therefore, it is contended that its use should become standard practice.RésuméL’état du problème inverse des eaux souterraines est synthétisé. L’accent est placé sur la caractérisation de l’aquifère, où les modélisateurs doivent jouer avec l’incertitude des modèles conceptuels (notamment la variabilité spatiale et temporelle), les facteurs d’échelle, plusieurs inconnues sur différents paramètres (transmissivité, recharge, conditions aux limites, etc.), la non linéarité, et souvent la sensibilité de plusieurs variables d’état (charges hydrauliques, concentrations) des propriétés de l’aquifère. A cause de ces difficultés, le calibrage ne peut être séparé du processus de modélisation, comme c’est le cas dans d’autres cas de figure. Par ailleurs, il peut être vu comme une des étapes dans le processus de détermination du comportement de l’aquifère. Il est montré que les méthodes d’évaluation des paramètres actuels ne diffèrent pas si ce n’est dans les détails des calculs informatiques. Il est montré qu’il existe une large panoplie de techniques d ‹inversion : codes de calcul utilisables par tout-un-chacun, accommodation de la variabilité via la géostatistique, incorporation d’informations géologiques et de différents types de données (température, occurrence, concentration en isotopes, âge, etc.), détermination de l’incertitude. Vu ces développements, la calibration automatique facilite énormément la modélisation. Par ailleurs, il est souhaitable que son utilisation devienne une pratique standardisée.ResumenSe sintetiza el estado del problema inverso en aguas subterráneas. El énfasis se ubica en la caracterización de acuíferos, donde los modeladores tienen que enfrentar la incertidumbre del modelo conceptual (principalmente variabilidad temporal y espacial), dependencia de escala, muchos tipos de parámetros desconocidos (transmisividad, recarga, condiciones limitantes, etc), no linealidad, y frecuentemente baja sensibilidad de variables de estado (típicamente presiones y concentraciones) a las propiedades del acuífero. Debido a estas dificultades, no puede separarse la calibración de los procesos de modelado, como frecuentemente se hace en otros campos. En su lugar, debe de visualizarse como un paso en el proceso de entendimiento del comportamiento del acuífero. En realidad, se muestra que los métodos reales de estimación de parámetros no difieren uno del otro en lo esencial, aunque sí pueden diferir en los detalles computacionales. Se discute que existe amplio espacio para la mejora del problema inverso en aguas subterráneas: desarrollo de códigos amigables al usuario, acomodamiento de variabilidad a través de geoestadística, incorporación de información geológica y diferentes tipos de datos (temperatura, presencia y concentración de isótopos, edad, etc), explicación apropiada de incertidumbre, etc. A pesar de esto, aún con los códigos existentes, la calibración automática facilita enormemente la tarea de modelado. Por lo tanto, se sostiene que su uso debería de convertirse en práctica standard.

[1]  Ted Chang,et al.  Introduction to Geostatistics: Applications in Hydrogeology , 2001, Technometrics.

[2]  J. Gómez-Hernández,et al.  To be or not to be multi-Gaussian? A reflection on stochastic hydrogeology , 1998 .

[3]  Y. Rubin,et al.  A Full‐Bayesian Approach to parameter inference from tracer travel time moments and investigation of scale effects at the Cape Cod Experimental Site , 2000 .

[4]  Jesús Carrera,et al.  A discussion on validation of hydrogeological models , 1993 .

[5]  S. Gorelick,et al.  Optimal groundwater quality management under parameter uncertainty , 1987 .

[6]  J. Carrera,et al.  On geostatistical formulations of the groundwater flow inverse problem , 1991 .

[7]  S. Finsterle,et al.  Estimating flow parameter distributions using ground-penetrating radar and hydrological measurements , 2004 .

[8]  Frank T.-C. Tsai,et al.  Global‐local optimization for parameter structure identification in three‐dimensional groundwater modeling , 2003 .

[9]  S. P. Neuman,et al.  A comprehensive strategy of hydrogeologic modeling and uncertainty analysis for nuclear facilities a , 2003 .

[10]  Hirotugu Akaike,et al.  On entropy maximization principle , 1977 .

[11]  W. Kinzelbach,et al.  Determination of a well head protection zone by stochastic inverse modelling , 1998 .

[12]  R. R. Bennett,et al.  Geology and ground-water resources of the Baltimore area , 1952 .

[13]  W. J. Shuttleworth,et al.  Parameter estimation of a land surface scheme using multicriteria methods , 1999 .

[14]  M. B. Beck,et al.  Water quality modeling: A review of the analysis of uncertainty , 1987 .

[15]  S. P. Neuman,et al.  Estimation of aquifer parameters under transient and steady-state conditions: 2 , 1986 .

[16]  D. A. Zimmerman,et al.  A comparison of seven geostatistically based inverse approaches to estimate transmissivities for modeling advective transport by groundwater flow , 1998 .

[17]  Keith Beven,et al.  Prophecy, reality and uncertainty in distributed hydrological modelling , 1993 .

[18]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[19]  Marie Larocque,et al.  Determining Karst Transmissivities with Inverse Modeling and an Equivalent Porous Media , 1999 .

[20]  J. Parker,et al.  Analysis of the inverse problem for transient unsaturated flow , 1988 .

[21]  M. Th. van Genuchten,et al.  Parameter estimation for unsaturated flow and transport models — A review , 1987 .

[22]  David W. Pollock,et al.  A Controlled Experiment in Ground Water Flow Model Calibration , 1998 .

[23]  Richard L. Cooley,et al.  Simultaneous confidence and prediction intervals for nonlinear regression models with application to a groundwater flow model , 1987 .

[24]  Richard L. Cooley,et al.  A method of estimating parameters and assessing reliability for models of steady state groundwater flow: 1. Theory and numerical properties , 1977 .

[25]  C. Medaglia,et al.  A Numerical Study , 2005 .

[26]  E. G. Vomvoris,et al.  A geostatistical approach to the inverse problem in groundwater modeling (steady state) and one‐dimensional simulations , 1983 .

[27]  S. P. Neuman Calibration of distributed parameter groundwater flow models viewed as a multiple‐objective decision process under uncertainty , 1973 .

[28]  Steen Christensen,et al.  Evaluation of confidence intervals for a steady-state leaky aquifer model , 1999 .

[29]  N. Bohr MONTE CARLO METHODS IN GEOPHYSICAL INVERSE PROBLEMS , 2002 .

[30]  Guohe Huang,et al.  Application of a GIS-based modeling system for effective management of petroleum-contaminated sites , 2002 .

[31]  Karl-Josef Hollenbeck,et al.  Maximum-likelihood estimation of unsaturated hydraulic parameters , 1998 .

[32]  Alberto Guadagnini,et al.  Conditioning mean steady state flow on hydraulic head and conductivity through geostatistical inversion , 2003 .

[33]  Andrés Sahuquillo,et al.  Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric head data—3. Application to the Culebra formation at the Waste Isolation Pilot Plan (WIPP), New Mexico, USA , 1998 .

[34]  R. Stallman,et al.  Numerical analysis of regional water levels to define aquifer hydrology , 1956 .

[35]  Luis A. Bastidas,et al.  Sensitivity analysis using mass flux and concentration , 1999 .

[36]  T. Yeh,et al.  Hydraulic tomography: Development of a new aquifer test method , 2000 .

[37]  Jesús Carrera,et al.  An Improved form of Adjoint-State Equations for Transient Problems , 1994 .

[38]  L. Hu,et al.  Combination of Dependent Realizations Within the Gradual Deformation Method , 2002 .

[39]  Harald Kunstmann,et al.  Conditional first‐order second‐moment method and its application to the quantification of uncertainty in groundwater modeling , 2002 .

[40]  Mary C. Hill,et al.  Methods and Guidelines for Effective Model Calibration , 2000 .

[41]  R. W. Nelson,et al.  In‐place measurement of permeability in heterogeneous media: 2. Experimental and computational considerations , 1961 .

[42]  Clifford I. Voss,et al.  Multiobjective sampling design for parameter estimation and model discrimination in groundwater solute transport , 1989 .

[43]  Soroosh Sorooshian,et al.  Multi-objective global optimization for hydrologic models , 1998 .

[44]  Mary C. Hill,et al.  A new multistage groundwater transport inverse method: presentation, evaluation, and implications , 1999 .

[45]  Peter K. Kitanidis,et al.  Comparison of Gaussian Conditional Mean and Kriging Estimation in the Geostatistical Solution of the Inverse Problem , 1985 .

[46]  M. Marietta,et al.  Pilot Point Methodology for Automated Calibration of an Ensemble of conditionally Simulated Transmissivity Fields: 1. Theory and Computational Experiments , 1995 .

[47]  Jesús Carrera,et al.  Geostatistical Inversion of Cross‐Hole Pumping Tests for Identifying Preferential Flow Channels Within a Shear Zone , 2001 .

[48]  John Doherty,et al.  Ground Water Model Calibration Using Pilot Points and Regularization , 2003, Ground water.

[49]  G. Dagan Stochastic Modeling of Groundwater Flow by Unconditional and Conditional Probabilities: The Inverse Problem , 1985 .

[50]  Jesús Carrera,et al.  Coupled estimation of flow and solute transport parameters , 1996 .

[51]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[52]  Keith Beven,et al.  The future of distributed models: model calibration and uncertainty prediction. , 1992 .

[53]  H. Akaike A new look at the statistical model identification , 1974 .

[54]  William W.-G. Yeh,et al.  Aquifer parameter identification with optimum dimension in parameterization , 1981 .

[55]  E. Poeter,et al.  Inverse Models: A Necessary Next Step in Ground‐Water Modeling , 1997 .

[56]  M. Boucher,et al.  Interpretation of Interference Tests in a Well Field Using Geostatistical Techniques to Fit the Permeability Distribution in a Reservoir Model , 1984 .

[57]  E. Hannan The Estimation of the Order of an ARMA Process , 1980 .

[58]  Jesús Carrera,et al.  State of the Art of the Inverse Problem Applied to the Flow and Solute Transport Equations , 1988 .

[59]  M. C. Hill,et al.  Locally refined block-centered finite-difference groundwater models: Evaluation of parameter sensitivity and the consequences for inverse modelling and predictions , 2002 .

[60]  A. N. Tikhonov,et al.  REGULARIZATION OF INCORRECTLY POSED PROBLEMS , 1963 .

[61]  M. C. Hill Relative efficiency of four parameter-estimation methods in steady-state and transient ground-water flow models. , 1990 .

[62]  Hans Jørgen Henriksen,et al.  Capture zone, travel time, and solute-transport predictions using inverse modeling and different geological models , 2003 .

[63]  J. Hadamard Sur les problemes aux derive espartielles et leur signification physique , 1902 .

[64]  Richard L. Cooley,et al.  A Comparison of Several Methods of Solving Nonlinear Regression Groundwater Flow Problems , 1985 .

[65]  Allan D. Woodbury,et al.  Simultaneous inversion of hydrogeologic and thermal data: 1. Theory and application using hydraulic head data , 1987 .

[66]  P. Kitanidis Introduction to Geostatistics: Applications in Hydrogeology , 1997 .

[67]  J. Carrera,et al.  Geostatistical inversion of coupled problems: dealing with computational burden and different types of data , 2003 .

[68]  Valerie A. Peters,et al.  GIS-based hydrogeological databases and groundwater modelling , 2001 .

[69]  Richard L. Cooley,et al.  Nonlinear‐regression groundwater flow modeling of a deep regional aquifer system , 1986 .

[70]  S. P. Neuman,et al.  Estimation of Aquifer Parameters Under Transient and Steady State Conditions: 1. Maximum Likelihood Method Incorporating Prior Information , 1986 .

[71]  G. Dagan,et al.  Stochastic identification of transmissivity and effective recharge in steady groundwater flow: 2. Case study , 1987 .

[72]  S. F. Mousavi,et al.  An approach to the design of experiments for discriminating among alternative conceptual models , 1992 .

[73]  S. P. Neuman,et al.  Three‐dimensional numerical inversion of pneumatic cross‐hole tests in unsaturated fractured tuff: 2. Equivalent parameters, high‐resolution stochastic imaging and scale effects , 2001 .

[74]  Steven F. Carle,et al.  Three‐dimensional hydrofacies modeling based on soil surveys and transition probability geostatistics , 1999 .

[75]  T. Reese,et al.  In vivo magnetic resonance methods in pharmaceutical research: current status and perspectives , 1999, NMR in biomedicine.

[76]  M. Hill A computer program (MODFLOWP) for estimating parameters of a transient, three-dimensional ground-water flow model using nonlinear regression , 1992 .

[77]  P. C. Shah,et al.  Reservoir History Matching by Bayesian Estimation , 1976 .

[78]  S. P. Neuman,et al.  Effects of kriging and inverse modeling on conditional simulation of the Avra Valley Aquifer in southern Arizona , 1982 .

[79]  A. Mantoglou Estimation of heterogeneous aquifer parameters from piezometric data using ridge functions and neural networks , 2003 .

[80]  Jesús Carrera,et al.  A Numerical Study on the Relationship Between Transmissivity and Specific Capacity in Heterogeneous Aquifers , 1999 .

[81]  Alf Larsson The international projects INTRACOIN, HYDROCOIN and INTRAVAL , 1992 .

[82]  Tian-Chyi J. Yeh,et al.  Applied Stochastic Hydrogeology. , 2005 .

[83]  G. Marsily,et al.  An Automatic Solution for the Inverse Problem , 1971 .

[84]  S. Murty Bhallamudi,et al.  Optimal Groundwater Management in Deltaic Regions using Simulated Annealing and Neural Networks , 2003 .

[85]  S. Sorooshian,et al.  Effective and efficient global optimization for conceptual rainfall‐runoff models , 1992 .

[86]  A. Sahuquillo,et al.  Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric data—I. Theory , 1997 .

[87]  A. E. Reisenauer,et al.  IN-PLACE MEASUREMENT OF PERMEABILITY IN HETEROGENEOUS MEDIA. PART III. EXAMINATION OF A COMPUTATIONAL SCHEME , 1961 .

[88]  J. Ware,et al.  Applications of Statistics , 1978 .

[89]  Leslie Smith,et al.  Efficient and Responsible Use of Prior Information in Inverse Methods , 1998 .

[90]  E. Poeter,et al.  Documentation of UCODE; a computer code for universal inverse modeling , 1998 .

[91]  R. W. Nelson,et al.  In‐place measurement of permeability in heterogeneous media: 1. Theory of a proposed method , 1960 .

[92]  H. Wheater,et al.  Hydrograph Sensitivity to Storm Kinematics , 1985 .

[93]  Jesús Carrera,et al.  Simulation of groundwater age distributions , 1998 .

[94]  Keith Beven,et al.  Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology , 2001 .

[95]  L. Hu,et al.  Gradual Deformation of Continuous Geostatistical Models for History Matching , 1998 .

[96]  Y. Rubin,et al.  Hydrogeological parameter estimation using geophysical data: a review of selected techniques , 2000 .

[97]  Mary C. Hill,et al.  Predictive modeling of flow and transport in a two‐dimensional intermediate‐scale, heterogeneous porous medium , 2001 .

[98]  Rangasami L. Kashyap,et al.  Optimal Choice of AR and MA Parts in Autoregressive Moving Average Models , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[99]  Yanyong Xiang,et al.  A composite L1 parameter estimator for model fitting in groundwater flow and solute transport simulation , 1993 .

[100]  S. P. Neuman,et al.  Estimation of Aquifer Parameters Under Transient and Steady State Conditions: 3. Application to Synthetic and Field Data , 1986 .

[101]  Heidi Christiansen Barlebo,et al.  Investigating the Macrodispersion Experiment (MADE) site in Columbus, Mississippi, using a three‐dimensional inverse flow and transport model , 2004 .

[102]  D. McLaughlin,et al.  A Reassessment of the Groundwater Inverse Problem , 1996 .

[103]  Frank J Rühli,et al.  State‐of–the–art imaging in palaeopathology: the value of multislice computed tomography in visualizing doubtful cranial lesions , 2002 .

[104]  Geeti Sen Approach to Design , 1984 .

[105]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[106]  W. Yeh Review of Parameter Identification Procedures in Groundwater Hydrology: The Inverse Problem , 1986 .

[107]  J. Jiao,et al.  Land subsidence caused by groundwater exploitation in Suzhou City, China , 2003 .