Estimation of fiber orientations using neighborhood information

Data from diffusion magnetic resonance imaging (dMRI) can be used to reconstruct fiber tracts, for example, in muscle and white matter. Estimation of fiber orientations (FOs) is a crucial step in the reconstruction process and these estimates can be corrupted by noise. In this paper, a new method called Fiber Orientation Reconstruction using Neighborhood Information (FORNI) is described and shown to reduce the effects of noise and improve FO estimation performance by incorporating spatial consistency. FORNI uses a fixed tensor basis to model the diffusion weighted signals, which has the advantage of providing an explicit relationship between the basis vectors and the FOs. FO spatial coherence is encouraged using weighted ℓ1-norm regularization terms, which contain the interaction of directional information between neighbor voxels. Data fidelity is encouraged using a squared error between the observed and reconstructed diffusion weighted signals. After appropriate weighting of these competing objectives, the resulting objective function is minimized using a block coordinate descent algorithm, and a straightforward parallelization strategy is used to speed up processing. Experiments were performed on a digital crossing phantom, ex vivo tongue dMRI data, and in vivo brain dMRI data for both qualitative and quantitative evaluation. The results demonstrate that FORNI improves the quality of FO estimation over other state of the art algorithms.

[1]  Jerry L. Prince,et al.  Direct segmentation of the major white matter tracts in diffusion tensor images , 2011, NeuroImage.

[2]  Mariano Rivera,et al.  A flocking based method for brain tractography , 2014, Medical Image Anal..

[3]  Aaron Carass,et al.  Erratum to: The Java Image Science Toolkit (JIST) for Rapid Prototyping and Publishing of Neuroimaging Software , 2010, Neuroinformatics.

[4]  Daniel C. Alexander,et al.  NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain , 2012, NeuroImage.

[5]  P. Hagmann,et al.  Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[6]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[7]  Rachid Deriche,et al.  Parametric Dictionary Learning for Modeling EAP and ODF in Diffusion MRI , 2012, MICCAI.

[8]  Jong Doo Lee,et al.  Morphological alterations in the congenital blind based on the analysis of cortical thickness and surface area , 2009, NeuroImage.

[9]  Jerry L. Prince,et al.  A Bayesian approach to distinguishing interdigitated tongue muscles from limited diffusion magnetic resonance imaging , 2015, Comput. Medical Imaging Graph..

[10]  P. Ellen Grant,et al.  Multi-shell diffusion signal recovery from sparse measurements , 2014, Medical Image Anal..

[11]  Rachid Deriche,et al.  Continuous diffusion signal, EAP and ODF estimation via Compressive Sensing in diffusion MRI , 2013, Medical Image Anal..

[12]  Tim B. Dyrby,et al.  Orientationally invariant indices of axon diameter and density from diffusion MRI , 2010, NeuroImage.

[13]  Maxime Descoteaux,et al.  Dipy, a library for the analysis of diffusion MRI data , 2014, Front. Neuroinform..

[14]  Quan Zhou,et al.  Resolving complex fibre architecture by means of sparse spherical deconvolution in the presence of isotropic diffusion , 2014, Medical Imaging.

[15]  Baba C. Vemuri,et al.  A Unified Computational Framework for Deconvolution to Reconstruct Multiple Fibers From Diffusion Weighted MRI , 2007, IEEE Transactions on Medical Imaging.

[16]  Rachid Deriche,et al.  Non-Negative Spherical Deconvolution (NNSD) for estimation of fiber Orientation Distribution Function in single-/multi-shell diffusion MRI , 2014, NeuroImage.

[17]  C. Westin,et al.  Resolving crossings in the corticospinal tract by two-tensor streamline tractography: Method and clinical assessment using fMRI , 2009, NeuroImage.

[18]  Alan Connelly,et al.  Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution , 2007, NeuroImage.

[19]  Jean-Philippe Thiran,et al.  Structured sparsity for spatially coherent fibre orientation estimation in diffusion MRI , 2015, NeuroImage.

[20]  Xiang Hao,et al.  Joint Fractional Segmentation and Multi-tensor Estimation in Diffusion MRI , 2013, IPMI.

[21]  Remco Duits,et al.  Left-Invariant Diffusions on the Space of Positions and Orientations and their Application to Crossing-Preserving Smoothing of HARDI images , 2011, International Journal of Computer Vision.

[22]  Alan Connelly,et al.  Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution , 2004, NeuroImage.

[23]  Julien Cohen-Adad,et al.  Accelerated diffusion spectrum imaging with compressed sensing using adaptive dictionaries , 2012, MICCAI.

[24]  Stephen P. Boyd,et al.  An Efficient Method for Compressed Sensing , 2007, 2007 IEEE International Conference on Image Processing.

[25]  Matthew F Glasser,et al.  DTI tractography of the human brain's language pathways. , 2008, Cerebral cortex.

[26]  Jerry L. Prince,et al.  Smoothing fields of weighted collections with applications to diffusion MRI processing , 2014, Medical Imaging.

[27]  N. Makris,et al.  High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity , 2002, Magnetic resonance in medicine.

[28]  Baba C. Vemuri,et al.  Resolution of complex tissue microarchitecture using the diffusion orientation transform (DOT) , 2006, NeuroImage.

[29]  Nathan Intrator,et al.  Variational multiple-tensor fitting of fiber-ambiguous diffusion-weighted magnetic resonance imaging voxels. , 2008, Magnetic resonance imaging.

[30]  Yogesh Rathi,et al.  Spatially Regularized Compressed Sensing for High Angular Resolution Diffusion Imaging , 2011, IEEE Transactions on Medical Imaging.

[31]  Rachid Deriche,et al.  Theoretical Analysis and Practical Insights on EAP Estimation via a Unified HARDI Framework , 2011 .

[32]  Y. Cohen,et al.  High b‐value q‐space analyzed diffusion‐weighted MRS and MRI in neuronal tissues – a technical review , 2002, NMR in biomedicine.

[33]  Jerry L. Prince,et al.  Resolution of crossing fibers with constrained compressed sensing using diffusion tensor MRI , 2012, NeuroImage.

[34]  Margaret A. Naeser,et al.  Horizontal portion of arcuate fasciculus fibers track to pars opercularis, not pars triangularis, in right and left hemispheres: A DTI study , 2010, NeuroImage.

[35]  S. Osher,et al.  Coordinate descent optimization for l 1 minimization with application to compressed sensing; a greedy algorithm , 2009 .

[36]  Fang-Cheng Yeh,et al.  Generalized ${ q}$-Sampling Imaging , 2010, IEEE Transactions on Medical Imaging.

[37]  R. Deriche,et al.  Regularized, fast, and robust analytical Q‐ball imaging , 2007, Magnetic resonance in medicine.

[38]  Nikolaus Weiskopf,et al.  Adaptive smoothing of multi-shell diffusion weighted magnetic resonance data by msPOAS , 2014, NeuroImage.

[39]  Peter J. Basser,et al.  3-D tomographic reconstruction of the average propagator from MRI data , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[40]  Dmitry S. Novikov,et al.  MesoFT: Unifying Diffusion Modelling and Fiber Tracking , 2014, MICCAI.

[41]  P. Basser,et al.  In vivo fiber tractography using DT‐MRI data , 2000, Magnetic resonance in medicine.

[42]  Hamid Soltanian-Zadeh,et al.  Atlas-based fiber bundle segmentation using principal diffusion directions and spherical harmonic coefficients , 2011, NeuroImage.

[43]  Jeremy D. Schmahmann,et al.  Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers , 2008, NeuroImage.

[44]  N. Ayache,et al.  Log‐Euclidean metrics for fast and simple calculus on diffusion tensors , 2006, Magnetic resonance in medicine.

[45]  P. V. van Zijl,et al.  Three‐dimensional tracking of axonal projections in the brain by magnetic resonance imaging , 1999, Annals of neurology.

[46]  Sinisa Pajevic,et al.  Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: Application to white matter fiber tract mapping in the human brain , 1999, Magnetic resonance in medicine.

[47]  Susanne Schnell,et al.  Global fiber reconstruction becomes practical , 2011, NeuroImage.

[48]  A. Gupta,et al.  A Bayesian Approach to , 1997 .

[49]  Daniel C. Alexander,et al.  Accelerated microstructure imaging via convex optimisation for regions with multiple fibres (AMICOx) , 2015, 2015 IEEE International Conference on Image Processing (ICIP).

[50]  Jerry L. Prince,et al.  Segmentation of the Cerebellar Peduncles Using a Random Forest Classifier and a Multi-object Geometric Deformable Model: Application to Spinocerebellar Ataxia Type 6 , 2015, Neuroinformatics.

[51]  Valerij G. Kiselev,et al.  Fiber Continuity: An Anisotropic Prior for ODF Estimation , 2011, IEEE Transactions on Medical Imaging.

[52]  Aaron Carass,et al.  A Bayesian Approach to Distinguishing Interdigitated Muscles in the Tongue from Limited Diffusion Weighted Imaging , 2014, BAMBI.

[53]  Denis Le Bihan,et al.  Looking into the functional architecture of the brain with diffusion MRI , 2003, Nature Reviews Neuroscience.

[54]  Jean-Philippe Thiran,et al.  Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data , 2015, NeuroImage.

[55]  Dongrong Xu,et al.  A localized Richardson-Lucy algorithm for fiber orientation estimation in high angular resolution diffusion imaging. , 2015, Medical physics.

[56]  Rachid Deriche,et al.  AxTract: Microstructure-Driven Tractography Based on the Ensemble Average Propagator , 2015, IPMI.

[57]  Alan Connelly,et al.  A robust spherical deconvolution method for the analysis of low SNR or low angular resolution diffusion data , 2012 .

[58]  Mark W. Woolrich,et al.  Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? , 2007, NeuroImage.

[59]  Jan Sijbers,et al.  Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data , 2014, NeuroImage.

[60]  Gerhard Goos,et al.  Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014 , 2014, Lecture Notes in Computer Science.

[61]  Jean-Philippe Thiran,et al.  Sparse regularization for fiber ODF reconstruction: from the suboptimality of $\ell_2$ and $\ell_1$ priors to $\ell_0$ , 2012, 1208.2247.

[62]  Mariano Rivera,et al.  Diffusion Basis Functions Decomposition for Estimating White Matter Intravoxel Fiber Geometry , 2007, IEEE Transactions on Medical Imaging.

[63]  J. E. Tanner,et al.  Spin diffusion measurements : spin echoes in the presence of a time-dependent field gradient , 1965 .

[64]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[65]  Nancy C. Andreasen,et al.  Evaluation of the GTRACT diffusion tensor tractography algorithm: A validation and reliability study , 2006, NeuroImage.

[66]  J. Klein,et al.  Human Motor Corpus Callosum: Topography, Somatotopy, and Link between Microstructure and Function , 2007, The Journal of Neuroscience.

[67]  Timothy Edward John Behrens,et al.  Diffusion MRI : from quantitative measurement to in vivo neuroanatomy , 2014 .

[68]  Duan Xu,et al.  Q‐ball reconstruction of multimodal fiber orientations using the spherical harmonic basis , 2006, Magnetic resonance in medicine.

[69]  Carl-Fredrik Westin,et al.  Geometrically constrained two-tensor model for crossing tracts in DWI. , 2006, Magnetic resonance imaging.

[70]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .