Quantitative Comparison of Color Performances Between IPS and MVA LCDs

Color gamut and color shifts of the film-compensated multi-domain in-plane-switching (IPS) and multi-domain vertical alignment (MVA) liquid crystal displays (LCDs) are calculated quantitatively using light-emitting diodes (LEDs) and cold-cathode fluorescent lamp (CCFL) backlight. Simulation results indicate that the LED backlight exhibits better angular color uniformity and smaller color shifts than CCFL. In addition, the color gamut can be further widened and the color shift reduced when using color-sequential RGB-LED backlight without color filters. In general, both IPS and MVA LCDs show relatively small color shift under different backlights, but MVA has a lower color shift using the optimized uniaxial compensation films

[1]  Y. Yamamoto,et al.  40.2: RGB Color Control System for LED Backlights in IPS-LCD TVs , 2005 .

[2]  Peter Hsu,et al.  33.1: A 32-in. High-Contrast-Ratio OCB (Optical Compensation Bend) LCD TV , 2006 .

[3]  Katsumi Kondo,et al.  OPTICAL CHARACTERIZATION OF THE IN-PLANE SWITCHING EFFECT UTILIZING MULTIDOMAIN STRUCTURES , 1998 .

[4]  Shin-Tson Wu,et al.  Phase-matched compensation films for liquid crystal displays , 1995 .

[5]  Woo-Yeol Kim Technology overview: LCDs for TV application , 2004 .

[6]  G. Wyszecki,et al.  Color Science Concepts and Methods , 1982 .

[7]  Zhibing Ge,et al.  Bending angle effects on the multi-domain in-plane-switching liquid crystal displays , 2005, Journal of Display Technology.

[8]  A. Robertson,et al.  Colorimetry: Fundamentals and Applications , 2005 .

[9]  Christoph G. A. Hoelen,et al.  LP‐2: High Performance LCD Backlighting using High Intensity Red, Green and Blue Light Emitting Diodes , 2001 .

[10]  Masato Ishii,et al.  Wide-viewing angle IPS-LCD for TV applications using optical compensation technology , 2006, SPIE OPTO.

[11]  Shin-Tson Wu,et al.  Ultrawide-view liquid crystal displays , 2005, Journal of Display Technology.

[12]  Shin-Tson Wu,et al.  Extraordinarily high-contrast and wide-view liquid-crystal displays , 2005 .

[13]  A. Lien A detailed derivation of extended Jones matrix representation for twisted nematic liquid crystal displays , 1997 .

[14]  Sang Soo Kim 15.4: Invited Paper: Super PVA Sets New State‐of‐the‐Art for LCD‐TV , 2004 .

[15]  Michael H. Brill,et al.  Color appearance models , 1998 .

[16]  J. Sturm,et al.  Modeling of leakage current distributions in series connected polysilicon thin film transistors , 1995, Proceedings of Second International Workshop on Active Matrix Liquid Crystal Displays.

[17]  Philip J. Bos,et al.  21.2: Optimum Film Compensation Modes for TN and VA LCDS , 1998 .

[18]  Mark D. Fairchild,et al.  Color Appearance Models , 1997, Computer Vision, A Reference Guide.

[19]  S.-T. Wu,et al.  Characteristics of a 12-domain MVA-LCD , 2006, Journal of Display Technology.

[20]  Wu,et al.  Birefringence dispersions of liquid crystals. , 1986, Physical review. A, General physics.

[21]  M. F. Hsieh,et al.  69.2: Invited Paper: Recent Improvements of Multidomain-Vertically-Aligned-Mode LCD TV , 2006 .

[22]  Shin-Tson Wu,et al.  Color shift reduction of a multi-domain IPS-LCD using RGB-LED backlight. , 2006, Optics express.

[23]  Shin-Tson Wu,et al.  Reflective Liquid Crystal Displays , 2001 .