MT1-MMP-dependent control of skeletal stem cell commitment via a β1-integrin/YAP/TAZ signaling axis.

[1]  Rebecca A Mosig,et al.  Mutation of membrane type-1 metalloproteinase, MT1-MMP, causes the multicentric osteolysis and arthritis disease Winchester syndrome. , 2012, American journal of human genetics.

[2]  Yihai Cao,et al.  MT1-MMP inactivates ADAM9 to regulate FGFR2 signaling and calvarial osteogenesis. , 2012, Developmental cell.

[3]  H. Nakauchi,et al.  MT1-MMP plays a critical role in hematopoiesis by regulating HIF-mediated chemokine/cytokine gene transcription within niche cells. , 2012, Blood.

[4]  Charles P. Lin,et al.  Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. , 2012, Cell stem cell.

[5]  S. Weiss,et al.  MT1-MMP regulates the PI3Kδ·Mi-2/NuRD-dependent control of macrophage immune function. , 2012, Genes & development.

[6]  Diti Chatterjee Bhowmick,et al.  Zfp423 expression identifies committed preadipocytes and localizes to adipose endothelial and perivascular cells. , 2012, Cell metabolism.

[7]  G. Karsenty,et al.  The contribution of bone to whole-organism physiology , 2012, Nature.

[8]  J. Sottile,et al.  MT1-MMP regulates the turnover and endocytosis of extracellular matrix fibronectin , 2011, Journal of Cell Science.

[9]  O. Kallioniemi,et al.  SHARPIN is an endogenous inhibitor of β1-integrin activation , 2011, Nature Cell Biology.

[10]  R. Kaunas,et al.  Fluid Shear Stress and Sphingosine 1-Phosphate Activate Calpain to Promote Membrane Type 1 Matrix Metalloproteinase (MT1-MMP) Membrane Translocation and Endothelial Invasion into Three-dimensional Collagen Matrices* , 2011, The Journal of Biological Chemistry.

[11]  T. Okano,et al.  Hippo pathway regulation by cell morphology and stress fibers , 2011, Development.

[12]  Thomas Boudou,et al.  A hitchhiker's guide to mechanobiology. , 2011, Developmental cell.

[13]  D. Docheva,et al.  Integrins α2β1 and α11β1 regulate the survival of mesenchymal stem cells on collagen I , 2011, Cell Death and Disease.

[14]  G. Halder,et al.  Modulating F‐actin organization induces organ growth by affecting the Hippo pathway , 2011, The EMBO journal.

[15]  Nicola Elvassore,et al.  Role of YAP/TAZ in mechanotransduction , 2011, Nature.

[16]  K. Chan,et al.  MT1‐MMP cleaves Dll1 to negatively regulate Notch signalling to maintain normal B‐cell development , 2011, The EMBO journal.

[17]  T. Hohl,et al.  Bone marrow mesenchymal stem and progenitor cells induce monocyte emigration in response to circulating toll-like receptor ligands. , 2011, Immunity.

[18]  Elliot L. Botvinick,et al.  Concentration Independent Modulation of Local Micromechanics in a Fibrin Gel , 2011, PloS one.

[19]  A. Trumpp,et al.  The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in , 2011, The Journal of experimental medicine.

[20]  Jianping Fu,et al.  Cell shape and substrate rigidity both regulate cell stiffness. , 2011, Biophysical journal.

[21]  S. Rizzi,et al.  Elucidating the role of matrix stiffness in 3D cell migration and remodeling. , 2011, Biophysical journal.

[22]  R. Atit,et al.  Role of canonical Wnt signaling/β-catenin via Dermo1 in cranial dermal cell development , 2010, Development.

[23]  D. Rowe,et al.  Isolation of murine bone marrow derived mesenchymal stem cells using Twist2 Cre transgenic mice. , 2010, Bone.

[24]  N. Fujii,et al.  The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. , 2010, Immunity.

[25]  Geert Carmeliet,et al.  Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. , 2010, Developmental cell.

[26]  Ben D. MacArthur,et al.  Mesenchymal and haematopoietic stem cells form a unique bone marrow niche , 2010, Nature.

[27]  M. Seiki,et al.  A Membrane Protease Regulates Energy Production in Macrophages by Activating Hypoxia-inducible Factor-1 via a Non-proteolytic Mechanism* , 2010, The Journal of Biological Chemistry.

[28]  S. Weiss,et al.  Genetic Link Between Obesity and MMP14-Dependent Adipogenic Collagen Turnover , 2010, Diabetes.

[29]  Jian Q. Feng,et al.  Multiple functions of Osterix are required for bone growth and homeostasis in postnatal mice , 2010, Proceedings of the National Academy of Sciences.

[30]  S. Weiss,et al.  Membrane-Type I Matrix Metalloproteinase-Dependent Regulation of Rheumatoid Arthritis Synoviocyte Function , 2010, The Journal of Immunology.

[31]  David J. Mooney,et al.  Harnessing Traction-Mediated Manipulation of the Cell-Matrix Interface to Control Stem Cell Fate , 2010, Nature materials.

[32]  Charles P. Lin,et al.  Bone progenitor dysfunction induces myelodysplasia and secondary leukemia , 2010, Nature.

[33]  Milan Mrksich,et al.  Geometric cues for directing the differentiation of mesenchymal stem cells , 2010, Proceedings of the National Academy of Sciences.

[34]  S. Weiss,et al.  MT1-MMP controls human mesenchymal stem cell trafficking and differentiation. , 2010, Blood.

[35]  N. Behrendt,et al.  MT1‐MMP and Type II Collagen Specify Skeletal Stem Cells and Their Bone and Cartilage Progeny , 2009, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[36]  A. Miyawaki,et al.  Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow , 2009, The Journal of experimental medicine.

[37]  S. Weiss,et al.  Navigating ECM barriers at the invasive front: the cancer cell-stroma interface. , 2009, Annual review of cell and developmental biology.

[38]  G. Daley,et al.  Bone marrow adipocytes as negative regulators of the hematopoietic microenvironment , 2009, Nature.

[39]  Stephen J. Weiss,et al.  Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited , 2009, The Journal of cell biology.

[40]  T. Reiman,et al.  Altered Expression of Fibronectin and Collagens I and IV in Multiple Myeloma and Monoclonal Gammopathy of Undetermined Significance , 2009, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[41]  Randall J. Lee,et al.  The effect of injected RGD modified alginate on angiogenesis and left ventricular function in a chronic rat infarct model. , 2009, Biomaterials.

[42]  I. Weissman,et al.  Endochondral ossification is required for hematopoietic stem cell niche formation , 2008, Nature.

[43]  D. Bonnet,et al.  Isolation, culture, and differentiation potential of mouse marrow stromal cells. , 2008, Current protocols in stem cell biology.

[44]  S. Krane,et al.  Matrix metalloproteinases and bone. , 2008, Bone.

[45]  T. Hardingham,et al.  Chondrogenic Differentiation of Human Bone Marrow Stem Cells in Transwell Cultures: Generation of Scaffold‐Free Cartilage , 2007, Stem cells.

[46]  B. Sacchetti,et al.  Self-Renewing Osteoprogenitors in Bone Marrow Sinusoids Can Organize a Hematopoietic Microenvironment , 2007, Cell.

[47]  Younghun Jung,et al.  Osteoblasts support B-lymphocyte commitment and differentiation from hematopoietic stem cells. , 2007, Blood.

[48]  Kenji Nakamura,et al.  Crosstalk between neovessels and mural cells directs the site-specific expression of MT1-MMP to endothelial tip cells , 2007, Journal of Cell Science.

[49]  A. McMahon,et al.  Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors , 2006, Development.

[50]  Stephen J. Weiss,et al.  A Pericellular Collagenase Directs the 3-Dimensional Development of White Adipose Tissue , 2006, Cell.

[51]  Cynthia A. Reinhart-King,et al.  Tensional homeostasis and the malignant phenotype. , 2005, Cancer cell.

[52]  Thomas Benjamin,et al.  TAZ, a Transcriptional Modulator of Mesenchymal Stem Cell Differentiation , 2005, Science.

[53]  Xizhi Guo,et al.  Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. , 2005, Developmental cell.

[54]  Christopher S. Chen,et al.  Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. , 2004, Developmental cell.

[55]  H. Birkedal‐Hansen,et al.  MT1-MMP–dependent, apoptotic remodeling of unmineralized cartilage , 2003, The Journal of cell biology.

[56]  E. Olson,et al.  Conditional inactivation of FGF receptor 2 reveals an essential role for FGF signaling in the regulation of osteoblast function and bone growth , 2003, Development.

[57]  J. Rodríguez,et al.  Mesenchymal stem cells from osteoporotic patients produce a type I collagen‐deficient extracellular matrix favoring adipogenic differentiation , 2000, Journal of cellular biochemistry.

[58]  R. W. Rauser,et al.  Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[59]  J. Ward,et al.  MT1-MMP-Deficient Mice Develop Dwarfism, Osteopenia, Arthritis, and Connective Tissue Disease due to Inadequate Collagen Turnover , 1999, Cell.

[60]  S. Nilsson,et al.  Immunofluorescence Characterization of Key Extracellular Matrix Proteins in Murine Bone Marrow In Situ , 1998, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[61]  Jindan Yu,et al.  Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. , 2012, Genes & development.

[62]  S. Corvera,et al.  The vascular endothelium of the adipose tissue gives rise to both white and brown fat cells , 2012 .

[63]  E. Liao,et al.  Membrane-type matrix metalloproteinase-1 (MT1-MMP) is down-regulated in estrogen-deficient rat osteoblast in vivo , 2004, Journal of endocrinological investigation.