Numerical approximation of non-convex variational problems

We present some numerical results for the solution of non-convex variational problems. In general, the problems of interest do not attain a minimum energy. Functions that generate a minimizing sequence of energies develop infinitely fine oscillations, and it is believed that these oscillations model the fine scale structures that are ubiquitously observed in metallurgy, ferromagnetism, etc. Direct simulation of these variational problems on discrete meshes is plagued with practical problems. We present a simple 1-D example that exhibits problems typical of those encountered with such an approach. Many of these problems can be traced to the fundamental problem that the variational problem doesn't have a solution. An alternative is to consider the generalized solutions of L. C. Young. We present some numerical experiments using this algorithm for variational problems that involve vector valued functions.