On the Shape of the General Error Locator Polynomial for Cyclic Codes
暂无分享,去创建一个
Fabrizio Caruso | Massimiliano Sala | Claudia Tinnirello | Emmanuela Orsini | M. Sala | Emmanuela Orsini | F. Caruso | Claudia Tinnirello
[1] Chong-Dao Lee,et al. Algebraic Decoding of a Class of Binary Cyclic Codes Via Lagrange Interpolation Formula , 2010, IEEE Transactions on Information Theory.
[2] Massimiliano Sala,et al. Complexity of multivariate polynomial evaluation , 2011, ArXiv.
[3] Gui Liang Feng,et al. A new procedure for decoding cyclic and BCH codes up to actual minimum distance , 1994, IEEE Trans. Inf. Theory.
[4] Massimiliano Sala,et al. On the evaluation of multivariate polynomials over finite fields , 2013, J. Symb. Comput..
[5] Chong-Dao Lee,et al. More on general error locator polynomials for a class of binary cyclic codes , 2010, 2010 International Symposium On Information Theory & Its Applications.
[6] James L. Massey,et al. Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.
[7] Moni Naor,et al. The hardness of decoding linear codes with preprocessing , 1990, IEEE Trans. Inf. Theory.
[8] Robert T. Chien,et al. Cyclic decoding procedures for Bose- Chaudhuri-Hocquenghem codes , 1964, IEEE Trans. Inf. Theory.
[9] Daniel Panario,et al. Handbook of Finite Fields , 2013, Discrete mathematics and its applications.
[10] Michele Elia,et al. Algebraic decoding of the (23, 12, 7) Golay code , 1987, IEEE Trans. Inf. Theory.
[11] O. Antoine,et al. Theory of Error-correcting Codes , 2022 .
[12] F. Lemmermeyer. Error-correcting Codes , 2005 .
[13] Chong-Dao Lee,et al. New method of predetermining unified unknown syndrome representations for decoding binary cyclic codes , 2012, IET Commun..
[14] Emmanuela Orsini,et al. Improved decoding of affine-variety codes , 2011, 1102.4186.
[15] M. Sala,et al. Correcting errors and erasures via the syndrome variety , 2005 .
[16] Emmanuela Orsini,et al. General Error Locator Polynomials for Binary Cyclic Codes With $t \le 2$ and $n < 63$ , 2007, IEEE Transactions on Information Theory.
[17] Chong-Dao Lee,et al. Weak General Error Locator Polynomials for Triple-Error-Correcting Binary Golay Code , 2011, IEEE Communications Letters.
[18] Chong-Dao Lee,et al. Algebraic Decoding of the $(89, 45, 17)$ Quadratic Residue Code , 2008, IEEE Transactions on Information Theory.
[19] Xuemin Chen,et al. Decoding the (47, 24, 11) quadratic residue code , 2001, IEEE Trans. Inf. Theory.
[20] F. MacWilliams,et al. The Theory of Error-Correcting Codes , 1977 .
[21] Jian-Hong Chen,et al. Unusual general error locator polynomial for the (23, 12, 7) golay code , 2010, IEEE Communications Letters.
[22] Chong-Dao Lee,et al. Algebraic decoding of a class of ternary cyclic codes , 2012, 2012 IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC 2012).
[23] Vera Pless. Review: F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting codes. I and II , 1978 .
[24] Martin Vetterli,et al. Simple algorithms for BCH decoding , 1995, IEEE Trans. Commun..
[25] Chong-Dao Lee,et al. Algebraic decoding of (71, 36, 11), (79, 40, 15), and (97, 49, 15) quadratic residue codes , 2003, IEEE Trans. Commun..
[26] John J. Cannon,et al. The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..
[27] Emmanuela Orsini,et al. Decoding Cyclic Codes: the Cooper Philosophy , 2009, Gröbner Bases, Coding, and Cryptography.
[28] Shu Lin,et al. Long BCH Codes Are Bad , 1967, Inf. Control..
[29] Stafford E. Tavares,et al. The minimum distance of all binary cyclic codes of odd lengths from 69 to 99 , 1978, IEEE Trans. Inf. Theory.
[30] Chong-Dao Lee,et al. Multivariate Interpolation Formula over Finite Fields and Its Applications in Coding Theory , 2012, ArXiv.
[31] R. Brualdi,et al. Handbook Of Coding Theory , 2011 .
[32] Chong-Dao Lee,et al. Algebraic decoding of (103, 52, 19) and (113, 57, 15) quadratic residue codes , 2005, IEEE Transactions on Communications.
[33] W. W. Peterson,et al. Error-Correcting Codes. , 1962 .
[34] Jean-Charles Faugère,et al. On the decoding of binary cyclic codes with the Newton identities , 2009, J. Symb. Comput..
[35] Joachim Rosenthal,et al. On the decoding complexity of cyclic codes up to the BCH bound , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.