A unified approximate reasoning theory suitable for both propositional calculus system $$\mathcal{L}^* $$ and predicate calculus system $$\mathcal{K}^* $$

AbstractThe concepts of metric R0-algebra and Hilbert cube of type R0 are introduced. A unified approximate reasoning theory in propositional caculus system $$\mathcal{L}^* $$ and predicate calculus system $$\mathcal{K}^* $$ is established semantically as well as syntactically, and a unified complete theorem is obtained.

[1]  Johann Schumann,et al.  Automated Theorem Proving in Software Engineering , 2001, Springer Berlin Heidelberg.

[2]  Yuping Bi,et al.  Establishment of multiple shoot clumps from maize (Zea mays L.) and regeneration of herbicide-resistant transgenic plantlets , 2002, Science in China Series C: Life Sciences.

[3]  Wang Guojun A formal deductive system for fuzzy propositional calculus , 1997 .

[4]  J. A. Goguen,et al.  The logic of inexact concepts , 1969, Synthese.

[5]  Mingsheng Ying,et al.  A logic for approximate reasoning , 1994, Journal of Symbolic Logic.

[6]  Guojun Wang,et al.  A triangular norm-based fuzzy predicate logic , 2003, Fuzzy Sets Syst..

[7]  Wolfgang Bibel,et al.  Automated Theorem Proving , 1987, Artificial Intelligence / Künstliche Intelligenz.

[8]  B. de Boer,et al.  Advances in Artificial Life, Lecture Notes in Artificial Intelligence 3630 , 2005 .

[9]  John Wylie Lloyd,et al.  Foundations of Logic Programming , 1987, Symbolic Computation.

[10]  Grigoris Antoniou,et al.  Nonmonotonic reasoning , 1997 .

[11]  Ruqian Lu,et al.  A model of reasoning about knowledge , 1998 .

[12]  Guojun Wang,et al.  A triangular-norm-based propositional fuzzy logic , 2003, Fuzzy Sets Syst..

[13]  Dov M. Gabbay,et al.  Special issue on Combining Probability and Logic , 2003, J. Appl. Log..

[14]  Richard C. T. Lee,et al.  Symbolic logic and mechanical theorem proving , 1973, Computer science classics.

[15]  Yee Leung,et al.  Integrated semantics and logic metric spaces , 2003, Fuzzy Sets Syst..

[16]  Daowu Pei,et al.  The completeness and applications of the formal system ℒ* , 2002, Science in China Series F: Information Sciences.

[17]  Li Fu,et al.  Theory of truth degrees of propositions in two-valued logic , 2002, Science China Mathematics.

[18]  Jan Pavelka,et al.  On Fuzzy Logic I Many-valued rules of inference , 1979, Math. Log. Q..

[19]  Weizhuo Zhong,et al.  Morphological characteristics of ZnO crystallites under hydrothermal conditions , 1997 .

[20]  J. D. Monk,et al.  Mathematical Logic , 1976 .