The relation between inference and interpolation in the framework of fuzzy systems

Abstract This papers aims at clarifying the meaning of different interpretations of the Max-Min or, more generally, the Max-t-norm rule in fuzzy systems. It turns out that basically two distinct approaches play an important role in fuzzy logic and its applications: fuzzy interpolation on the basis of an imprecisely known function and logical inference in the presence of fuzzy information.

[1]  J. Buckley,et al.  Fuzzy input-output controllers are universal approximators , 1993 .

[2]  Bart Kosko,et al.  Fuzzy Systems as Universal Approximators , 1994, IEEE Trans. Computers.

[3]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[4]  Jan Pavelka,et al.  On Fuzzy Logic I Many-valued rules of inference , 1979, Math. Log. Q..

[5]  Hao Ying,et al.  Essentials of fuzzy modeling and control , 1995 .

[6]  Vilém Novák,et al.  Fuzzy Approach to Reasoning and Decision-Making , 1992, Theory and Decision Library.

[7]  Vilém Novák On the syntactico-semantical completeness of first-order fuzzy logic. I. Syntax and semantics , 1990, Kybernetika.

[8]  Vilém Novák On the syntactico-semantical completeness of first-order fuzzy logic. II. Main results , 1990, Kybernetika.

[9]  Brian R. Gaines,et al.  Fuzzy reasoning and its applications , 1981 .

[10]  Vilém Novák,et al.  The alternative mathematical model of linguistic semantics and pragmatics , 2013, ISFR series on systems science and engineering.

[11]  Jan Pavelka,et al.  On Fuzzy Logic III. Semantical completeness of some many-valued propositional calculi , 1979, Math. Log. Q..

[12]  菅野 道夫,et al.  Industrial applications of fuzzy control , 1985 .

[13]  Vilém Novák,et al.  PARADIGM, FORMAL PROPERTIES AND LIMITS OF FUZZY LOGIC , 1996 .

[14]  L. Zadeh A COMPUTATIONAL APPROACH TO FUZZY QUANTIFIERS IN NATURAL LANGUAGES , 1983 .

[15]  F. Klawonn,et al.  Fuzzy control as interpolation on the basis of equality relations , 1993, [Proceedings 1993] Second IEEE International Conference on Fuzzy Systems.

[16]  L. Zadeh,et al.  Fuzzy Logic for the Management of Uncertainty , 1992 .

[17]  Ronald R. Yager,et al.  Essentials of fuzzy modeling and control , 1994 .

[18]  U. Höhle M-valued Sets and Sheaves over Integral Commutative CL-Monoids , 1992 .

[19]  James J. Buckley,et al.  Universal fuzzy controllers , 1992, Autom..

[20]  Dimitar P. Filev,et al.  Fuzzy SETS AND FUZZY LOGIC , 1996 .

[21]  Jan Pavelka,et al.  On Fuzzy Logic II. Enriched residuated lattices and semantics of propositional calculi , 1979, Math. Log. Q..

[22]  Lotfi A. Zadeh,et al.  A COMPUTATIONAL APPROACH TO FUZZY QUANTIFIERS IN NATURAL LANGUAGES , 1983 .

[23]  Juan Luis Castro,et al.  Fuzzy logic controllers are universal approximators , 1995, IEEE Trans. Syst. Man Cybern..

[24]  Frank Klawonn,et al.  Equality Relations as a Basis for Fuzzy Control , 1993 .

[25]  Didier Dubois,et al.  Basic Issues on Fuzzy Rules and Their Application to Fuzzy Control , 1991, Fuzzy Logic and Fuzzy Control.

[26]  L. Zadeh,et al.  An Introduction to Fuzzy Logic Applications in Intelligent Systems , 1992 .

[27]  Enrique H. Ruspini,et al.  On the semantics of fuzzy logic , 1991, Int. J. Approx. Reason..

[28]  Lotfi A. Zadeh,et al.  Quantitative fuzzy semantics , 1971, Inf. Sci..

[29]  Vilém Novák On the Logical Basis of Approximate Reasoning , 1992 .

[30]  F. Klawonn Fuzzy sets and vague environments , 1994 .

[31]  Frank Klawonn,et al.  Foundations of fuzzy systems , 1994 .

[32]  Vilém Novák,et al.  Fuzzy control from the logical point of view , 1994 .

[33]  Vilém Novák,et al.  Fuzzy logic as a basis of approximate reasoning , 1992 .

[34]  V. Novák Fuzzy sets and their applications , 1989 .

[35]  Vilém Novák,et al.  Linguistically oriented fuzzy logic control and its design , 1995, Int. J. Approx. Reason..

[36]  Lotfi A. Zadeh,et al.  PRUF—a meaning representation language for natural languages , 1978 .

[37]  L. A. ZADEH,et al.  The concept of a linguistic variable and its application to approximate reasoning - I , 1975, Inf. Sci..

[38]  Janusz Kacprzyk,et al.  Management decision support systems using fuzzy sets and possibility theory , 1985 .